Skip to content

Auto Explanation

AutoExplanation

Bases: Experiment

An extension of Experiment class with automatic explainers and parameters recommendation.

Parameters:

Name Type Description Default
model Model

The machine learning model to be analyzed.

required
data DataSource

The data source used for the experiment.

required
modality Modality

An object to specify modality-specific workflow.

required
input_extractor Optional[Callable]

Custom function to extract input features.

None
label_extractor Optional[Callable]

Custom function to extract labels features.

None
target_extractor Optional[Callable]

Custom function to extract target features.

None
input_visualizer Optional[Callable]

Custom function for visualizing input features.

required
target_labels Optional[bool]

Whether to use target labels.

False

Attributes:

Name Type Description
recommended RecommenderOutput

A data object, containing recommended explainers.

Source code in pnpxai/core/experiment/auto_explanation.py
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
class AutoExplanation(Experiment):
    """
    An extension of Experiment class with automatic explainers and parameters recommendation.

    Parameters:
        model (Model): The machine learning model to be analyzed.
        data (DataSource): The data source used for the experiment.
        modality (Modality): An object to specify modality-specific workflow.
        input_extractor (Optional[Callable], optional): Custom function to extract input features.
        label_extractor (Optional[Callable], optional): Custom function to extract labels features.
        target_extractor (Optional[Callable], optional): Custom function to extract target features.
        input_visualizer (Optional[Callable], optional): Custom function for visualizing input features.
        target_labels (Optional[bool]): Whether to use target labels.

    Attributes:
        recommended (RecommenderOutput): A data object, containing recommended explainers.
    """

    def __init__(
        self,
        model: Model,
        data: DataSource,
        modality: Modality,
        input_extractor: Optional[Callable] = None,
        label_extractor: Optional[Callable] = None,
        target_extractor: Optional[Callable] = None,
        target_labels: bool = False
    ):
        self.recommended = XaiRecommender().recommend(modality=modality, model=model)
        self.modality = modality

        super().__init__(
            model=model,
            data=data,
            modality=modality,
            explainers=self._load_default_explainers(model),
            postprocessors=self._load_default_postprocessors(),
            metrics=self._load_default_metrics(model),
            input_extractor=input_extractor,
            label_extractor=label_extractor,
            target_extractor=target_extractor,
            target_labels=target_labels,
        )

    def _load_default_explainers(self, model):
        explainers = []
        for explainer_type in self.recommended.explainers:
            explainer = explainer_type(model=model)
            default_kwargs = self._generate_default_kwargs_for_explainer()
            for k, v in default_kwargs.items():
                if hasattr(explainer, k):
                    explainer = explainer.set_kwargs(**{k: v})
            explainers.append(explainer)
        return explainers

    def _load_default_metrics(self, model):
        empty_metrics = []  # empty means that explainer is not assigned yet
        for metric_type in DEFAULT_METRICS:
            metric = metric_type(model=model)
            default_kwargs = self._generate_default_kwargs_for_metric()
            for k, v in default_kwargs.items():
                if hasattr(metric, k):
                    metric = metric.set_kwargs(**{k: v})
            empty_metrics.append(metric)
        return empty_metrics

    def _load_default_postprocessors(self):
        modalities = format_into_tuple(self.modality)
        if len(modalities) == 1:
            return self.modality.get_default_postprocessors()
        return list(itertools.product(*tuple(
            modality.get_default_postprocessors()
            for modality in modalities
        )))

    def _generate_default_kwargs_for_explainer(self):
        return {
            'feature_mask_fn': self.modality.get_default_feature_mask_fn(),
            'baseline_fn': self.modality.get_default_baseline_fn(),
        }

    def _generate_default_kwargs_for_metric(self):
        return {
            'baseline_fn': self.modality.get_default_baseline_fn(),
            'channel_dim': self.modality.channel_dim,
        }

AutoExplanationForImageClassification

Bases: AutoExplanation

An extension of AutoExplanation class with modality set to the ImageModality.

Parameters:

Name Type Description Default
model Model

The machine learning model to be analyzed.

required
data DataSource

The data source used for the experiment.

required
input_extractor Optional[Callable]

Custom function to extract input features.

None
label_extractor Optional[Callable]

Custom function to extract labels features.

None
target_extractor Optional[Callable]

Custom function to extract target features.

None
target_labels Optional[bool]

Whether to use target labels.

False
channel_dim int

Channel dimension.

1

Attributes:

Name Type Description
modality ImageModality

An object to specify modality-specific workflow.

recommended RecommenderOutput

A data object, containing recommended explainers.

Source code in pnpxai/core/experiment/auto_explanation.py
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
class AutoExplanationForImageClassification(AutoExplanation):
    """
    An extension of AutoExplanation class with modality set to the ImageModality.

    Parameters:
        model (Model): The machine learning model to be analyzed.
        data (DataSource): The data source used for the experiment.
        input_extractor (Optional[Callable]): Custom function to extract input features.
        label_extractor (Optional[Callable]): Custom function to extract labels features.
        target_extractor (Optional[Callable]): Custom function to extract target features.
        target_labels (Optional[bool]): Whether to use target labels.
        channel_dim (int): Channel dimension.

    Attributes:
        modality (ImageModality): An object to specify modality-specific workflow.
        recommended (RecommenderOutput): A data object, containing recommended explainers.
    """
    def __init__(
        self,
        model: Module,
        data: DataLoader,
        input_extractor: Optional[Callable] = None,
        label_extractor: Optional[Callable] = None,
        target_extractor: Optional[Callable] = None,
        target_labels: bool = False,
        channel_dim: int = 1,
    ):
        super().__init__(
            model=model,
            data=data,
            modality=ImageModality(channel_dim),
            input_extractor=input_extractor,
            label_extractor=label_extractor,
            target_extractor=target_extractor,
            target_labels=target_labels
        )

AutoExplanationForTSClassification

Bases: AutoExplanation

An extension of AutoExplanation class with modality set to the TimeSeriesModality.

Parameters:

Name Type Description Default
model Model

The machine learning model to be analyzed.

required
data DataSource

The data source used for the experiment.

required
input_extractor Optional[Callable]

Custom function to extract input features.

None
label_extractor Optional[Callable]

Custom function to extract labels features.

None
target_extractor Optional[Callable]

Custom function to extract target features.

None
target_labels Optional[bool]

Whether to use target labels.

False
sequence_dim Tuple[int]

Sequence dimension.

-1
mask_agg_dim Tuple[int]

A dimension for aggregating mask values. Usually, a channel dimension.

-2

Attributes:

Name Type Description
modality TimeSeriesModality

An object to specify modality-specific workflow.

recommended RecommenderOutput

A data object, containing recommended explainers.

Source code in pnpxai/core/experiment/auto_explanation.py
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
class AutoExplanationForTSClassification(AutoExplanation):
    """
    An extension of AutoExplanation class with modality set to the TimeSeriesModality.

    Parameters:
        model (Model): The machine learning model to be analyzed.
        data (DataSource): The data source used for the experiment.
        input_extractor (Optional[Callable], optional): Custom function to extract input features.
        label_extractor (Optional[Callable], optional): Custom function to extract labels features.
        target_extractor (Optional[Callable], optional): Custom function to extract target features.
        target_labels (Optional[bool]): Whether to use target labels.
        sequence_dim (Tuple[int]): Sequence dimension.
        mask_agg_dim (Tuple[int]): A dimension for aggregating mask values. Usually, a channel dimension.

    Attributes:
        modality (TimeSeriesModality): An object to specify modality-specific workflow.
        recommended (RecommenderOutput): A data object, containing recommended explainers.
    """
    def __init__(
        self,
        model: Module,
        data: DataLoader,
        input_extractor: Optional[Callable] = None,
        label_extractor: Optional[Callable] = None,
        target_extractor: Optional[Callable] = None,
        target_labels: bool = False,
        sequence_dim: int = -1,
        mask_agg_dim: int = -2,
    ):
        self.mask_agg_dim = mask_agg_dim
        super().__init__(
            model=model,
            data=data,
            modality=TimeSeriesModality(sequence_dim),
            input_extractor=input_extractor,
            label_extractor=label_extractor,
            target_extractor=target_extractor,
            target_labels=target_labels
        )

    def _generate_default_kwargs_for_metric(self):
        return {
            'baseline_fn': self.modality.get_default_baseline_fn(),
            'feature_mask_fn': self.modality.get_default_feature_mask_fn(),
            'channel_dim': self.modality.channel_dim,
            'mask_agg_dim': self.mask_agg_dim,
        }

AutoExplanationForTextClassification

Bases: AutoExplanation

An extension of AutoExplanation class with modality set to the TextModality.

Parameters:

Name Type Description Default
model Model

The machine learning model to be analyzed.

required
data DataSource

The data source used for the experiment.

required
layer TargetLayer

A Module or its string representation to select a target layer for analysis.

required
mask_token_id int

A mask token id.

required
input_extractor Optional[Callable]

Custom function to extract input features.

None
forward_arg_extractor Optional[Callable]

Custom function to extract forward arguments.

None
additional_forward_arg_extractor Optional[Callable]

Custom function to extract additional forward arguments.

None
label_extractor Optional[Callable]

Custom function to extract labels features.

None
target_extractor Optional[Callable]

Custom function to extract target features.

None
target_labels Optional[bool]

Whether to use target labels.

False
channel_dim int

Channel dimension.

-1

Attributes:

Name Type Description
modality ImageModality

An object to specify modality-specific workflow.

recommended RecommenderOutput

A data object, containing recommended explainers.

Source code in pnpxai/core/experiment/auto_explanation.py
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
class AutoExplanationForTextClassification(AutoExplanation):
    """
    An extension of AutoExplanation class with modality set to the TextModality.

    Parameters:
        model (Model): The machine learning model to be analyzed.
        data (DataSource): The data source used for the experiment.
        layer (TargetLayer): A Module or its string representation to select a target layer for analysis.
        mask_token_id (int): A mask token id.
        input_extractor (Optional[Callable], optional): Custom function to extract input features.
        forward_arg_extractor (Optional[Callable]): Custom function to extract forward arguments.
        additional_forward_arg_extractor (Optional[Callable]): Custom function to extract additional forward arguments.
        label_extractor (Optional[Callable], optional): Custom function to extract labels features.
        target_extractor (Optional[Callable], optional): Custom function to extract target features.
        target_labels (Optional[bool]): Whether to use target labels.
        channel_dim (int): Channel dimension.

    Attributes:
        modality (ImageModality): An object to specify modality-specific workflow.
        recommended (RecommenderOutput): A data object, containing recommended explainers.
    """
    def __init__(
        self,
        model: Module,
        data: DataLoader,
        layer: TargetLayer,
        mask_token_id: int,
        input_extractor: Optional[Callable] = None,
        forward_arg_extractor: Optional[Callable] = None,
        additional_forward_arg_extractor: Optional[Callable] = None,
        label_extractor: Optional[Callable] = None,
        target_extractor: Optional[Callable] = None,
        target_labels: bool = False,
        channel_dim: int = -1,
    ):
        self.layer = layer
        self.mask_token_id = mask_token_id
        self.forward_arg_extractor = forward_arg_extractor
        self.additional_forward_arg_extractor = additional_forward_arg_extractor

        super().__init__(
            model=model,
            data=data,
            modality=TextModality(
                channel_dim=channel_dim, mask_token_id=mask_token_id),
            input_extractor=input_extractor,
            label_extractor=label_extractor,
            target_extractor=target_extractor,
            target_labels=target_labels
        )

    def _generate_default_kwargs_for_explainer(self):
        return {
            'layer': self.layer,
            'forward_arg_extractor': self.forward_arg_extractor,
            'additional_forward_arg_extractor': self.additional_forward_arg_extractor,
            'feature_mask_fn': self.modality.get_default_feature_mask_fn(),
            'baseline_fn': self.modality.get_default_baseline_fn(),
        }

    def _generate_default_kwargs_for_metric(self):
        return {
            'baseline_fn': self.modality.get_default_baseline_fn(),
            'channel_dim': self.modality.channel_dim,
        }

    def _load_default_metrics(self, model):
        empty_metrics = []  # empty means that explainer is not assigned yet
        for metric_type in DEFAULT_METRICS_FOR_TEXT:
            metric = metric_type(model=model)
            default_kwargs = self._generate_default_kwargs_for_metric()
            for k, v in default_kwargs.items():
                if hasattr(metric, k):
                    metric = metric.set_kwargs(**{k: v})
            empty_metrics.append(metric)
        return empty_metrics

AutoExplanationForVisualQuestionAnswering

Bases: AutoExplanation

An extension of AutoExplanation class with multiple modalities, namely ImageModality and TextModality.

Parameters:

Name Type Description Default
model Model

The machine learning model to be analyzed.

required
data DataSource

The data source used for the experiment.

required
layer TargetLayer

A Module or its string representation to select a target layer for analysis.

required
mask_token_id int

A mask token id.

required
modality Modality

An object to specify modality-specific workflow.

required
input_extractor Optional[Callable]

Custom function to extract input features.

None
forward_arg_extractor Optional[Callable]

Custom function to extract forward arguments.

None
additional_forward_arg_extractor Optional[Callable]

Custom function to extract additional forward arguments.

None
label_extractor Optional[Callable]

Custom function to extract labels features.

None
target_extractor Optional[Callable]

Custom function to extract target features.

None
target_labels Optional[bool]

Whether to use target labels.

False
channel_dim Tuple[int]

Channel dimension. Requires a tuple channel dimensions for image and text modalities.

(1, -1)

Attributes:

Name Type Description
modality Tuple[ImageModality, TextModality]

A tuple of objects to specify modality-specific workflow.

recommended RecommenderOutput

A data object, containing recommended explainers.

Source code in pnpxai/core/experiment/auto_explanation.py
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
class AutoExplanationForVisualQuestionAnswering(AutoExplanation):
    """
    An extension of AutoExplanation class with multiple modalities, namely ImageModality and TextModality.

    Parameters:
        model (Model): The machine learning model to be analyzed.
        data (DataSource): The data source used for the experiment.
        layer (TargetLayer): A Module or its string representation to select a target layer for analysis.
        mask_token_id (int): A mask token id.
        modality (Modality): An object to specify modality-specific workflow.
        input_extractor (Optional[Callable], optional): Custom function to extract input features.
        forward_arg_extractor (Optional[Callable]): Custom function to extract forward arguments.
        additional_forward_arg_extractor (Optional[Callable]): Custom function to extract additional forward arguments.
        label_extractor (Optional[Callable], optional): Custom function to extract labels features.
        target_extractor (Optional[Callable], optional): Custom function to extract target features.
        target_labels (Optional[bool]): Whether to use target labels.
        channel_dim (Tuple[int]): Channel dimension. Requires a tuple channel dimensions for image and text modalities.

    Attributes:
        modality (Tuple[ImageModality, TextModality]): A tuple of objects to specify modality-specific workflow.
        recommended (RecommenderOutput): A data object, containing recommended explainers.
    """
    def __init__(
        self,
        model: Module,
        data: DataLoader,
        layer: List[TargetLayer],
        mask_token_id: int,
        input_extractor: Optional[Callable] = None,
        forward_arg_extractor: Optional[Callable] = None,
        additional_forward_arg_extractor: Optional[Callable] = None,
        label_extractor: Optional[Callable] = None,
        target_extractor: Optional[Callable] = None,
        target_labels: bool = False,
        channel_dim: Tuple[int] = (1, -1),
    ):
        self.layer = layer
        self.mask_token_id = mask_token_id
        self.forward_arg_extractor = forward_arg_extractor
        self.additional_forward_arg_extractor = additional_forward_arg_extractor
        super().__init__(
            model=model,
            data=data,
            modality=(
                ImageModality(channel_dim=channel_dim[0]),
                TextModality(channel_dim=channel_dim[1], ),
            ),
            input_extractor=input_extractor,
            label_extractor=label_extractor,
            target_extractor=target_extractor,
            target_labels=target_labels
        )

    def _generate_default_kwargs_for_explainer(self):
        return {
            'layer': self.layer,
            'forward_arg_extractor': self.forward_arg_extractor,
            'additional_forward_arg_extractor': self.additional_forward_arg_extractor,
            'feature_mask_fn': tuple(
                modality.get_default_feature_mask_fn() for modality in self.modality
            ),
            'baseline_fn': tuple(
                modality.get_default_baseline_fn() for modality in self.modality
            ),
        }

    def _generate_default_kwargs_for_metric(self):
        return {
            'baseline_fn': tuple(
                modality.get_default_baseline_fn() for modality in self.modality
            ),
            'channel_dim': tuple(modality.channel_dim for modality in self.modality),
        }