Auto Explanation
pnpxai.core.experiment.auto_explanation
METRICS_BASELINE_FN_REQUIRED = PIXEL_FLIPPING_METRICS
module-attribute
METRICS_CHANNEL_DIM_REQUIRED = PIXEL_FLIPPING_METRICS
module-attribute
DEFAULT_METRICS_FOR_TEXT = [MoRF, LeRF, AbPC]
module-attribute
DEFAULT_METRICS = [MuFidelity, AbPC, Sensitivity, Complexity]
module-attribute
AutoExplanation
Bases: Experiment
An extension of Experiment class with automatic explainers and parameters recommendation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The machine learning model to be analyzed. |
required |
data
|
DataSource
|
The data source used for the experiment. |
required |
modality
|
Modality
|
An object to specify modality-specific workflow. |
required |
input_extractor
|
Optional[Callable]
|
Custom function to extract input features. |
None
|
label_extractor
|
Optional[Callable]
|
Custom function to extract labels features. |
None
|
target_extractor
|
Optional[Callable]
|
Custom function to extract target features. |
None
|
input_visualizer
|
Optional[Callable]
|
Custom function for visualizing input features. |
required |
target_labels
|
Optional[bool]
|
Whether to use target labels. |
False
|
Attributes:
Name | Type | Description |
---|---|---|
recommended |
RecommenderOutput
|
A data object, containing recommended explainers. |
recommended = XaiRecommender().recommend(modality=modality, model=model)
instance-attribute
modality = modality
instance-attribute
model = model
instance-attribute
model_device = next(self.model.parameters()).device
instance-attribute
manager = ExperimentManager(data=data, cache_device=cache_device)
instance-attribute
input_extractor = input_extractor if input_extractor is not None else default_input_extractor
instance-attribute
label_extractor = label_extractor if label_extractor is not None else default_target_extractor
instance-attribute
target_extractor = target_extractor if target_extractor is not None else default_target_extractor
instance-attribute
target_labels = target_labels
instance-attribute
errors
property
has_explanations
property
__init__(model: Model, data: DataSource, modality: Modality, input_extractor: Optional[Callable] = None, label_extractor: Optional[Callable] = None, target_extractor: Optional[Callable] = None, target_labels: bool = False)
subscribe(callback)
fire(event)
reset_errors()
to_device(x)
run_batch(explainer_id: int, postprocessor_id: int, metric_id: int, data_ids: Optional[Sequence[int]] = None) -> dict
Runs the experiment for selected batch of data, explainer, postprocessor and metric.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
explainer_id
|
int
|
ID of explainer to use for the run. |
required |
postprocessor_id
|
int
|
ID of postprocessor to use for the run. |
required |
metrics_id
|
int
|
ID of metric to use for the run. |
required |
Returns:
Type | Description |
---|---|
dict
|
The dictionary of inputs, labels, outputs, targets, explainer, explanation, postprocessor, postprocessed, metric, and evaluation. |
This method orchestrates the experiment by configuring the manager, obtaining explainer and metric instances, processing data, generating explanations, and evaluating metrics. It then caches the results in the manager, and returns back to the user.
Note: The input parameters allow for flexibility in specifying subset of data, explainer, postprocessor and metric to process.
predict_batch(data_ids: Sequence[int])
Predicts results of the experiment for selected batch of data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to process. |
required |
Returns:
Type | Description |
---|---|
Batched model outputs corresponding to data ids. |
This method orchestrates the experiment by configuring the manager and processing data. It then caches the results in the manager, and returns back to the user.
explain_batch(data_ids: Sequence[int], explainer_id: int)
Explains selected batch of data within experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to process. |
required |
Returns:
Type | Description |
---|---|
Batched model explanations corresponding to data ids. |
This method orchestrates the experiment by configuring the manager, obtaining explainer instance, processing data, and generating explanations. It then caches the results in the manager, and returns back to the user.
postprocess_batch(data_ids: List[int], explainer_id: int, postprocessor_id: int)
Postprocesses selected batch of data within experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to postprocess. |
required |
explainer_id
|
int
|
An explainer ID to specify the explainer to use. |
required |
postprocessor_id
|
int
|
A postprocessor ID to specify the postprocessor to use. |
required |
Returns:
Type | Description |
---|---|
Batched postprocessed model explanations corresponding to data ids. |
This method orchestrates the experiment by configuring the manager, obtaining explainer instance, processing data, and generating explanations. It then caches the results in the manager, and returns back to the user.
evaluate_batch(data_ids: List[int], explainer_id: int, postprocessor_id: int, metric_id: int)
Evaluates selected batch of data within experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to postprocess. |
required |
explainer_id
|
int
|
An explainer ID to specify the explainer to use. |
required |
postprocessor_id
|
int
|
A postprocessor ID to specify the postprocessor to use. |
required |
metric_id
|
int
|
A metric ID to evaluate the model explanations. |
required |
Returns:
Type | Description |
---|---|
Batched model evaluations corresponding to data ids. |
This method orchestrates the experiment by configuring the manager, obtaining explainer instance, processing data, generating explanations, and evaluating results. It then caches the results in the manager, and returns back to the user.
optimize(data_ids: Union[int, Sequence[int]], explainer_id: int, metric_id: int, direction: Literal['minimize', 'maximize'] = 'maximize', sampler: Literal['grid', 'random', 'tpe'] = 'tpe', n_trials: Optional[int] = None, timeout: Optional[float] = None, **kwargs)
Optimize experiment hyperparameters by processing data, generating explanations, evaluating with metrics, caching and retrieving the data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Union[int, Sequence[int]]
|
A single data ID or sequence of data IDs to specify the subset of data to process. |
required |
explainer_id
|
int
|
An explainer ID to specify the explainer to use. |
required |
metric_id
|
int
|
A metric ID to evaluate optimizer decisions. |
required |
direction
|
Literal['minimize', 'maximize']
|
A string to specify the direction of optimization. |
'maximize'
|
sampler
|
Literal['grid', 'random', 'tpe']
|
A string to specify the sampler to use for optimization. |
'tpe'
|
n_trials
|
Optional[int]
|
An integer to specify the number of trials for optimization. If none passed, the number of trials is inferred from |
None
|
timeout
|
Optional[float]
|
A float to specify the timeout for optimization. Ignored, if |
None
|
Returns:
Type | Description |
---|---|
The Experiment instance with updated results and state. |
This method orchestrates the experiment by configuring the manager, obtaining explainer and metric instances, processing data, generating explanations, and evaluating metrics. It then saves the results in the manager.
Note: The input parameters allow for flexibility in specifying subsets of data, explainers, and metrics to process. If not provided, the method processes all available data, explainers, postprocessors, and metrics.
get_inputs_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten last run input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened input data. |
This method retrieves input data using the input extractor and flattens it for further processing.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_all_inputs_flattened() -> Sequence[Tensor]
Retrieve and flatten all input data.
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened input data from all available data. |
This method retrieves input data from all available data points using the input extractor and flattens it.
get_labels_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten labels data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened labels data. |
This method retrieves label data using the label extractor and flattens it for further processing.
get_targets_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten target data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened target data. |
This method retrieves target data using the target extractor and flattens it for further processing.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_outputs_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten model outputs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened model outputs. |
This method retrieves flattened model outputs using the manager's get_flat_outputs method.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_explanations_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Sequence[Tensor]]
Retrieve and flatten explanations from all explainers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Sequence[Tensor]]
|
Flattened explanations from all explainers. |
This method retrieves flattened explanations for each explainer using the manager's get_flat_explanations
method.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_evaluations_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Sequence[Sequence[Tensor]]]
Retrieve and flatten evaluations for all explainers and metrics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Sequence[Sequence[Tensor]]]
|
Flattened evaluations for all explainers and metrics. |
This method retrieves flattened evaluations for each explainer and metric using the manager's get_flat_evaluations method.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_explainers_ranks() -> Optional[Sequence[Sequence[int]]]
Calculate and return rankings for explainers based on evaluations.
Returns:
Type | Description |
---|---|
Optional[Sequence[Sequence[int]]]
|
Rankings of explainers. Returns None if rankings cannot be calculated. |
This method calculates rankings for explainers based on evaluations and metric scores. It considers metric priorities and sorting preferences to produce rankings.
AutoExplanationForImageClassification
Bases: AutoExplanation
An extension of AutoExplanation class with modality set to the ImageModality.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The machine learning model to be analyzed. |
required |
data
|
DataSource
|
The data source used for the experiment. |
required |
input_extractor
|
Optional[Callable]
|
Custom function to extract input features. |
None
|
label_extractor
|
Optional[Callable]
|
Custom function to extract labels features. |
None
|
target_extractor
|
Optional[Callable]
|
Custom function to extract target features. |
None
|
target_labels
|
Optional[bool]
|
Whether to use target labels. |
False
|
channel_dim
|
int
|
Channel dimension. |
1
|
Attributes:
Name | Type | Description |
---|---|---|
modality |
ImageModality
|
An object to specify modality-specific workflow. |
recommended |
RecommenderOutput
|
A data object, containing recommended explainers. |
model = model
instance-attribute
model_device = next(self.model.parameters()).device
instance-attribute
manager = ExperimentManager(data=data, cache_device=cache_device)
instance-attribute
input_extractor = input_extractor if input_extractor is not None else default_input_extractor
instance-attribute
label_extractor = label_extractor if label_extractor is not None else default_target_extractor
instance-attribute
target_extractor = target_extractor if target_extractor is not None else default_target_extractor
instance-attribute
target_labels = target_labels
instance-attribute
modality = modality
instance-attribute
errors
property
has_explanations
property
recommended = XaiRecommender().recommend(modality=modality, model=model)
instance-attribute
__init__(model: Module, data: DataLoader, input_extractor: Optional[Callable] = None, label_extractor: Optional[Callable] = None, target_extractor: Optional[Callable] = None, target_labels: bool = False, channel_dim: int = 1)
subscribe(callback)
fire(event)
reset_errors()
to_device(x)
run_batch(explainer_id: int, postprocessor_id: int, metric_id: int, data_ids: Optional[Sequence[int]] = None) -> dict
Runs the experiment for selected batch of data, explainer, postprocessor and metric.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
explainer_id
|
int
|
ID of explainer to use for the run. |
required |
postprocessor_id
|
int
|
ID of postprocessor to use for the run. |
required |
metrics_id
|
int
|
ID of metric to use for the run. |
required |
Returns:
Type | Description |
---|---|
dict
|
The dictionary of inputs, labels, outputs, targets, explainer, explanation, postprocessor, postprocessed, metric, and evaluation. |
This method orchestrates the experiment by configuring the manager, obtaining explainer and metric instances, processing data, generating explanations, and evaluating metrics. It then caches the results in the manager, and returns back to the user.
Note: The input parameters allow for flexibility in specifying subset of data, explainer, postprocessor and metric to process.
predict_batch(data_ids: Sequence[int])
Predicts results of the experiment for selected batch of data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to process. |
required |
Returns:
Type | Description |
---|---|
Batched model outputs corresponding to data ids. |
This method orchestrates the experiment by configuring the manager and processing data. It then caches the results in the manager, and returns back to the user.
explain_batch(data_ids: Sequence[int], explainer_id: int)
Explains selected batch of data within experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to process. |
required |
Returns:
Type | Description |
---|---|
Batched model explanations corresponding to data ids. |
This method orchestrates the experiment by configuring the manager, obtaining explainer instance, processing data, and generating explanations. It then caches the results in the manager, and returns back to the user.
postprocess_batch(data_ids: List[int], explainer_id: int, postprocessor_id: int)
Postprocesses selected batch of data within experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to postprocess. |
required |
explainer_id
|
int
|
An explainer ID to specify the explainer to use. |
required |
postprocessor_id
|
int
|
A postprocessor ID to specify the postprocessor to use. |
required |
Returns:
Type | Description |
---|---|
Batched postprocessed model explanations corresponding to data ids. |
This method orchestrates the experiment by configuring the manager, obtaining explainer instance, processing data, and generating explanations. It then caches the results in the manager, and returns back to the user.
evaluate_batch(data_ids: List[int], explainer_id: int, postprocessor_id: int, metric_id: int)
Evaluates selected batch of data within experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to postprocess. |
required |
explainer_id
|
int
|
An explainer ID to specify the explainer to use. |
required |
postprocessor_id
|
int
|
A postprocessor ID to specify the postprocessor to use. |
required |
metric_id
|
int
|
A metric ID to evaluate the model explanations. |
required |
Returns:
Type | Description |
---|---|
Batched model evaluations corresponding to data ids. |
This method orchestrates the experiment by configuring the manager, obtaining explainer instance, processing data, generating explanations, and evaluating results. It then caches the results in the manager, and returns back to the user.
optimize(data_ids: Union[int, Sequence[int]], explainer_id: int, metric_id: int, direction: Literal['minimize', 'maximize'] = 'maximize', sampler: Literal['grid', 'random', 'tpe'] = 'tpe', n_trials: Optional[int] = None, timeout: Optional[float] = None, **kwargs)
Optimize experiment hyperparameters by processing data, generating explanations, evaluating with metrics, caching and retrieving the data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Union[int, Sequence[int]]
|
A single data ID or sequence of data IDs to specify the subset of data to process. |
required |
explainer_id
|
int
|
An explainer ID to specify the explainer to use. |
required |
metric_id
|
int
|
A metric ID to evaluate optimizer decisions. |
required |
direction
|
Literal['minimize', 'maximize']
|
A string to specify the direction of optimization. |
'maximize'
|
sampler
|
Literal['grid', 'random', 'tpe']
|
A string to specify the sampler to use for optimization. |
'tpe'
|
n_trials
|
Optional[int]
|
An integer to specify the number of trials for optimization. If none passed, the number of trials is inferred from |
None
|
timeout
|
Optional[float]
|
A float to specify the timeout for optimization. Ignored, if |
None
|
Returns:
Type | Description |
---|---|
The Experiment instance with updated results and state. |
This method orchestrates the experiment by configuring the manager, obtaining explainer and metric instances, processing data, generating explanations, and evaluating metrics. It then saves the results in the manager.
Note: The input parameters allow for flexibility in specifying subsets of data, explainers, and metrics to process. If not provided, the method processes all available data, explainers, postprocessors, and metrics.
get_inputs_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten last run input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened input data. |
This method retrieves input data using the input extractor and flattens it for further processing.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_all_inputs_flattened() -> Sequence[Tensor]
Retrieve and flatten all input data.
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened input data from all available data. |
This method retrieves input data from all available data points using the input extractor and flattens it.
get_labels_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten labels data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened labels data. |
This method retrieves label data using the label extractor and flattens it for further processing.
get_targets_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten target data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened target data. |
This method retrieves target data using the target extractor and flattens it for further processing.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_outputs_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten model outputs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened model outputs. |
This method retrieves flattened model outputs using the manager's get_flat_outputs method.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_explanations_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Sequence[Tensor]]
Retrieve and flatten explanations from all explainers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Sequence[Tensor]]
|
Flattened explanations from all explainers. |
This method retrieves flattened explanations for each explainer using the manager's get_flat_explanations
method.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_evaluations_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Sequence[Sequence[Tensor]]]
Retrieve and flatten evaluations for all explainers and metrics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Sequence[Sequence[Tensor]]]
|
Flattened evaluations for all explainers and metrics. |
This method retrieves flattened evaluations for each explainer and metric using the manager's get_flat_evaluations method.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_explainers_ranks() -> Optional[Sequence[Sequence[int]]]
Calculate and return rankings for explainers based on evaluations.
Returns:
Type | Description |
---|---|
Optional[Sequence[Sequence[int]]]
|
Rankings of explainers. Returns None if rankings cannot be calculated. |
This method calculates rankings for explainers based on evaluations and metric scores. It considers metric priorities and sorting preferences to produce rankings.
AutoExplanationForTextClassification
Bases: AutoExplanation
An extension of AutoExplanation class with modality set to the TextModality.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The machine learning model to be analyzed. |
required |
data
|
DataSource
|
The data source used for the experiment. |
required |
layer
|
TargetLayer
|
A Module or its string representation to select a target layer for analysis. |
required |
mask_token_id
|
int
|
A mask token id. |
required |
input_extractor
|
Optional[Callable]
|
Custom function to extract input features. |
None
|
forward_arg_extractor
|
Optional[Callable]
|
Custom function to extract forward arguments. |
None
|
additional_forward_arg_extractor
|
Optional[Callable]
|
Custom function to extract additional forward arguments. |
None
|
label_extractor
|
Optional[Callable]
|
Custom function to extract labels features. |
None
|
target_extractor
|
Optional[Callable]
|
Custom function to extract target features. |
None
|
target_labels
|
Optional[bool]
|
Whether to use target labels. |
False
|
channel_dim
|
int
|
Channel dimension. |
-1
|
Attributes:
Name | Type | Description |
---|---|---|
modality |
ImageModality
|
An object to specify modality-specific workflow. |
recommended |
RecommenderOutput
|
A data object, containing recommended explainers. |
layer = layer
instance-attribute
mask_token_id = mask_token_id
instance-attribute
forward_arg_extractor = forward_arg_extractor
instance-attribute
additional_forward_arg_extractor = additional_forward_arg_extractor
instance-attribute
model = model
instance-attribute
model_device = next(self.model.parameters()).device
instance-attribute
manager = ExperimentManager(data=data, cache_device=cache_device)
instance-attribute
input_extractor = input_extractor if input_extractor is not None else default_input_extractor
instance-attribute
label_extractor = label_extractor if label_extractor is not None else default_target_extractor
instance-attribute
target_extractor = target_extractor if target_extractor is not None else default_target_extractor
instance-attribute
target_labels = target_labels
instance-attribute
modality = modality
instance-attribute
errors
property
has_explanations
property
recommended = XaiRecommender().recommend(modality=modality, model=model)
instance-attribute
__init__(model: Module, data: DataLoader, layer: TargetLayer, mask_token_id: int, input_extractor: Optional[Callable] = None, forward_arg_extractor: Optional[Callable] = None, additional_forward_arg_extractor: Optional[Callable] = None, label_extractor: Optional[Callable] = None, target_extractor: Optional[Callable] = None, target_labels: bool = False, channel_dim: int = -1)
subscribe(callback)
fire(event)
reset_errors()
to_device(x)
run_batch(explainer_id: int, postprocessor_id: int, metric_id: int, data_ids: Optional[Sequence[int]] = None) -> dict
Runs the experiment for selected batch of data, explainer, postprocessor and metric.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
explainer_id
|
int
|
ID of explainer to use for the run. |
required |
postprocessor_id
|
int
|
ID of postprocessor to use for the run. |
required |
metrics_id
|
int
|
ID of metric to use for the run. |
required |
Returns:
Type | Description |
---|---|
dict
|
The dictionary of inputs, labels, outputs, targets, explainer, explanation, postprocessor, postprocessed, metric, and evaluation. |
This method orchestrates the experiment by configuring the manager, obtaining explainer and metric instances, processing data, generating explanations, and evaluating metrics. It then caches the results in the manager, and returns back to the user.
Note: The input parameters allow for flexibility in specifying subset of data, explainer, postprocessor and metric to process.
predict_batch(data_ids: Sequence[int])
Predicts results of the experiment for selected batch of data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to process. |
required |
Returns:
Type | Description |
---|---|
Batched model outputs corresponding to data ids. |
This method orchestrates the experiment by configuring the manager and processing data. It then caches the results in the manager, and returns back to the user.
explain_batch(data_ids: Sequence[int], explainer_id: int)
Explains selected batch of data within experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to process. |
required |
Returns:
Type | Description |
---|---|
Batched model explanations corresponding to data ids. |
This method orchestrates the experiment by configuring the manager, obtaining explainer instance, processing data, and generating explanations. It then caches the results in the manager, and returns back to the user.
postprocess_batch(data_ids: List[int], explainer_id: int, postprocessor_id: int)
Postprocesses selected batch of data within experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to postprocess. |
required |
explainer_id
|
int
|
An explainer ID to specify the explainer to use. |
required |
postprocessor_id
|
int
|
A postprocessor ID to specify the postprocessor to use. |
required |
Returns:
Type | Description |
---|---|
Batched postprocessed model explanations corresponding to data ids. |
This method orchestrates the experiment by configuring the manager, obtaining explainer instance, processing data, and generating explanations. It then caches the results in the manager, and returns back to the user.
evaluate_batch(data_ids: List[int], explainer_id: int, postprocessor_id: int, metric_id: int)
Evaluates selected batch of data within experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to postprocess. |
required |
explainer_id
|
int
|
An explainer ID to specify the explainer to use. |
required |
postprocessor_id
|
int
|
A postprocessor ID to specify the postprocessor to use. |
required |
metric_id
|
int
|
A metric ID to evaluate the model explanations. |
required |
Returns:
Type | Description |
---|---|
Batched model evaluations corresponding to data ids. |
This method orchestrates the experiment by configuring the manager, obtaining explainer instance, processing data, generating explanations, and evaluating results. It then caches the results in the manager, and returns back to the user.
optimize(data_ids: Union[int, Sequence[int]], explainer_id: int, metric_id: int, direction: Literal['minimize', 'maximize'] = 'maximize', sampler: Literal['grid', 'random', 'tpe'] = 'tpe', n_trials: Optional[int] = None, timeout: Optional[float] = None, **kwargs)
Optimize experiment hyperparameters by processing data, generating explanations, evaluating with metrics, caching and retrieving the data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Union[int, Sequence[int]]
|
A single data ID or sequence of data IDs to specify the subset of data to process. |
required |
explainer_id
|
int
|
An explainer ID to specify the explainer to use. |
required |
metric_id
|
int
|
A metric ID to evaluate optimizer decisions. |
required |
direction
|
Literal['minimize', 'maximize']
|
A string to specify the direction of optimization. |
'maximize'
|
sampler
|
Literal['grid', 'random', 'tpe']
|
A string to specify the sampler to use for optimization. |
'tpe'
|
n_trials
|
Optional[int]
|
An integer to specify the number of trials for optimization. If none passed, the number of trials is inferred from |
None
|
timeout
|
Optional[float]
|
A float to specify the timeout for optimization. Ignored, if |
None
|
Returns:
Type | Description |
---|---|
The Experiment instance with updated results and state. |
This method orchestrates the experiment by configuring the manager, obtaining explainer and metric instances, processing data, generating explanations, and evaluating metrics. It then saves the results in the manager.
Note: The input parameters allow for flexibility in specifying subsets of data, explainers, and metrics to process. If not provided, the method processes all available data, explainers, postprocessors, and metrics.
get_inputs_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten last run input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened input data. |
This method retrieves input data using the input extractor and flattens it for further processing.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_all_inputs_flattened() -> Sequence[Tensor]
Retrieve and flatten all input data.
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened input data from all available data. |
This method retrieves input data from all available data points using the input extractor and flattens it.
get_labels_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten labels data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened labels data. |
This method retrieves label data using the label extractor and flattens it for further processing.
get_targets_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten target data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened target data. |
This method retrieves target data using the target extractor and flattens it for further processing.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_outputs_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten model outputs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened model outputs. |
This method retrieves flattened model outputs using the manager's get_flat_outputs method.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_explanations_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Sequence[Tensor]]
Retrieve and flatten explanations from all explainers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Sequence[Tensor]]
|
Flattened explanations from all explainers. |
This method retrieves flattened explanations for each explainer using the manager's get_flat_explanations
method.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_evaluations_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Sequence[Sequence[Tensor]]]
Retrieve and flatten evaluations for all explainers and metrics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Sequence[Sequence[Tensor]]]
|
Flattened evaluations for all explainers and metrics. |
This method retrieves flattened evaluations for each explainer and metric using the manager's get_flat_evaluations method.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_explainers_ranks() -> Optional[Sequence[Sequence[int]]]
Calculate and return rankings for explainers based on evaluations.
Returns:
Type | Description |
---|---|
Optional[Sequence[Sequence[int]]]
|
Rankings of explainers. Returns None if rankings cannot be calculated. |
This method calculates rankings for explainers based on evaluations and metric scores. It considers metric priorities and sorting preferences to produce rankings.
AutoExplanationForVisualQuestionAnswering
Bases: AutoExplanation
An extension of AutoExplanation class with multiple modalities, namely ImageModality and TextModality.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The machine learning model to be analyzed. |
required |
data
|
DataSource
|
The data source used for the experiment. |
required |
layer
|
TargetLayer
|
A Module or its string representation to select a target layer for analysis. |
required |
mask_token_id
|
int
|
A mask token id. |
required |
modality
|
Modality
|
An object to specify modality-specific workflow. |
required |
input_extractor
|
Optional[Callable]
|
Custom function to extract input features. |
None
|
forward_arg_extractor
|
Optional[Callable]
|
Custom function to extract forward arguments. |
None
|
additional_forward_arg_extractor
|
Optional[Callable]
|
Custom function to extract additional forward arguments. |
None
|
label_extractor
|
Optional[Callable]
|
Custom function to extract labels features. |
None
|
target_extractor
|
Optional[Callable]
|
Custom function to extract target features. |
None
|
target_labels
|
Optional[bool]
|
Whether to use target labels. |
False
|
channel_dim
|
Tuple[int]
|
Channel dimension. Requires a tuple channel dimensions for image and text modalities. |
(1, -1)
|
Attributes:
Name | Type | Description |
---|---|---|
modality |
Tuple[ImageModality, TextModality]
|
A tuple of objects to specify modality-specific workflow. |
recommended |
RecommenderOutput
|
A data object, containing recommended explainers. |
layer = layer
instance-attribute
mask_token_id = mask_token_id
instance-attribute
forward_arg_extractor = forward_arg_extractor
instance-attribute
additional_forward_arg_extractor = additional_forward_arg_extractor
instance-attribute
model = model
instance-attribute
model_device = next(self.model.parameters()).device
instance-attribute
manager = ExperimentManager(data=data, cache_device=cache_device)
instance-attribute
input_extractor = input_extractor if input_extractor is not None else default_input_extractor
instance-attribute
label_extractor = label_extractor if label_extractor is not None else default_target_extractor
instance-attribute
target_extractor = target_extractor if target_extractor is not None else default_target_extractor
instance-attribute
target_labels = target_labels
instance-attribute
modality = modality
instance-attribute
errors
property
has_explanations
property
recommended = XaiRecommender().recommend(modality=modality, model=model)
instance-attribute
__init__(model: Module, data: DataLoader, layer: List[TargetLayer], mask_token_id: int, input_extractor: Optional[Callable] = None, forward_arg_extractor: Optional[Callable] = None, additional_forward_arg_extractor: Optional[Callable] = None, label_extractor: Optional[Callable] = None, target_extractor: Optional[Callable] = None, target_labels: bool = False, channel_dim: Tuple[int] = (1, -1))
subscribe(callback)
fire(event)
reset_errors()
to_device(x)
run_batch(explainer_id: int, postprocessor_id: int, metric_id: int, data_ids: Optional[Sequence[int]] = None) -> dict
Runs the experiment for selected batch of data, explainer, postprocessor and metric.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
explainer_id
|
int
|
ID of explainer to use for the run. |
required |
postprocessor_id
|
int
|
ID of postprocessor to use for the run. |
required |
metrics_id
|
int
|
ID of metric to use for the run. |
required |
Returns:
Type | Description |
---|---|
dict
|
The dictionary of inputs, labels, outputs, targets, explainer, explanation, postprocessor, postprocessed, metric, and evaluation. |
This method orchestrates the experiment by configuring the manager, obtaining explainer and metric instances, processing data, generating explanations, and evaluating metrics. It then caches the results in the manager, and returns back to the user.
Note: The input parameters allow for flexibility in specifying subset of data, explainer, postprocessor and metric to process.
predict_batch(data_ids: Sequence[int])
Predicts results of the experiment for selected batch of data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to process. |
required |
Returns:
Type | Description |
---|---|
Batched model outputs corresponding to data ids. |
This method orchestrates the experiment by configuring the manager and processing data. It then caches the results in the manager, and returns back to the user.
explain_batch(data_ids: Sequence[int], explainer_id: int)
Explains selected batch of data within experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to process. |
required |
Returns:
Type | Description |
---|---|
Batched model explanations corresponding to data ids. |
This method orchestrates the experiment by configuring the manager, obtaining explainer instance, processing data, and generating explanations. It then caches the results in the manager, and returns back to the user.
postprocess_batch(data_ids: List[int], explainer_id: int, postprocessor_id: int)
Postprocesses selected batch of data within experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to postprocess. |
required |
explainer_id
|
int
|
An explainer ID to specify the explainer to use. |
required |
postprocessor_id
|
int
|
A postprocessor ID to specify the postprocessor to use. |
required |
Returns:
Type | Description |
---|---|
Batched postprocessed model explanations corresponding to data ids. |
This method orchestrates the experiment by configuring the manager, obtaining explainer instance, processing data, and generating explanations. It then caches the results in the manager, and returns back to the user.
evaluate_batch(data_ids: List[int], explainer_id: int, postprocessor_id: int, metric_id: int)
Evaluates selected batch of data within experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to postprocess. |
required |
explainer_id
|
int
|
An explainer ID to specify the explainer to use. |
required |
postprocessor_id
|
int
|
A postprocessor ID to specify the postprocessor to use. |
required |
metric_id
|
int
|
A metric ID to evaluate the model explanations. |
required |
Returns:
Type | Description |
---|---|
Batched model evaluations corresponding to data ids. |
This method orchestrates the experiment by configuring the manager, obtaining explainer instance, processing data, generating explanations, and evaluating results. It then caches the results in the manager, and returns back to the user.
optimize(data_ids: Union[int, Sequence[int]], explainer_id: int, metric_id: int, direction: Literal['minimize', 'maximize'] = 'maximize', sampler: Literal['grid', 'random', 'tpe'] = 'tpe', n_trials: Optional[int] = None, timeout: Optional[float] = None, **kwargs)
Optimize experiment hyperparameters by processing data, generating explanations, evaluating with metrics, caching and retrieving the data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Union[int, Sequence[int]]
|
A single data ID or sequence of data IDs to specify the subset of data to process. |
required |
explainer_id
|
int
|
An explainer ID to specify the explainer to use. |
required |
metric_id
|
int
|
A metric ID to evaluate optimizer decisions. |
required |
direction
|
Literal['minimize', 'maximize']
|
A string to specify the direction of optimization. |
'maximize'
|
sampler
|
Literal['grid', 'random', 'tpe']
|
A string to specify the sampler to use for optimization. |
'tpe'
|
n_trials
|
Optional[int]
|
An integer to specify the number of trials for optimization. If none passed, the number of trials is inferred from |
None
|
timeout
|
Optional[float]
|
A float to specify the timeout for optimization. Ignored, if |
None
|
Returns:
Type | Description |
---|---|
The Experiment instance with updated results and state. |
This method orchestrates the experiment by configuring the manager, obtaining explainer and metric instances, processing data, generating explanations, and evaluating metrics. It then saves the results in the manager.
Note: The input parameters allow for flexibility in specifying subsets of data, explainers, and metrics to process. If not provided, the method processes all available data, explainers, postprocessors, and metrics.
get_inputs_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten last run input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened input data. |
This method retrieves input data using the input extractor and flattens it for further processing.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_all_inputs_flattened() -> Sequence[Tensor]
Retrieve and flatten all input data.
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened input data from all available data. |
This method retrieves input data from all available data points using the input extractor and flattens it.
get_labels_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten labels data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened labels data. |
This method retrieves label data using the label extractor and flattens it for further processing.
get_targets_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten target data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened target data. |
This method retrieves target data using the target extractor and flattens it for further processing.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_outputs_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten model outputs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened model outputs. |
This method retrieves flattened model outputs using the manager's get_flat_outputs method.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_explanations_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Sequence[Tensor]]
Retrieve and flatten explanations from all explainers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Sequence[Tensor]]
|
Flattened explanations from all explainers. |
This method retrieves flattened explanations for each explainer using the manager's get_flat_explanations
method.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_evaluations_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Sequence[Sequence[Tensor]]]
Retrieve and flatten evaluations for all explainers and metrics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Sequence[Sequence[Tensor]]]
|
Flattened evaluations for all explainers and metrics. |
This method retrieves flattened evaluations for each explainer and metric using the manager's get_flat_evaluations method.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_explainers_ranks() -> Optional[Sequence[Sequence[int]]]
Calculate and return rankings for explainers based on evaluations.
Returns:
Type | Description |
---|---|
Optional[Sequence[Sequence[int]]]
|
Rankings of explainers. Returns None if rankings cannot be calculated. |
This method calculates rankings for explainers based on evaluations and metric scores. It considers metric priorities and sorting preferences to produce rankings.
AutoExplanationForTSClassification
Bases: AutoExplanation
An extension of AutoExplanation class with modality set to the TimeSeriesModality.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The machine learning model to be analyzed. |
required |
data
|
DataSource
|
The data source used for the experiment. |
required |
input_extractor
|
Optional[Callable]
|
Custom function to extract input features. |
None
|
label_extractor
|
Optional[Callable]
|
Custom function to extract labels features. |
None
|
target_extractor
|
Optional[Callable]
|
Custom function to extract target features. |
None
|
target_labels
|
Optional[bool]
|
Whether to use target labels. |
False
|
sequence_dim
|
Tuple[int]
|
Sequence dimension. |
-1
|
mask_agg_dim
|
Tuple[int]
|
A dimension for aggregating mask values. Usually, a channel dimension. |
-2
|
Attributes:
Name | Type | Description |
---|---|---|
modality |
TimeSeriesModality
|
An object to specify modality-specific workflow. |
recommended |
RecommenderOutput
|
A data object, containing recommended explainers. |
mask_agg_dim = mask_agg_dim
instance-attribute
model = model
instance-attribute
model_device = next(self.model.parameters()).device
instance-attribute
manager = ExperimentManager(data=data, cache_device=cache_device)
instance-attribute
input_extractor = input_extractor if input_extractor is not None else default_input_extractor
instance-attribute
label_extractor = label_extractor if label_extractor is not None else default_target_extractor
instance-attribute
target_extractor = target_extractor if target_extractor is not None else default_target_extractor
instance-attribute
target_labels = target_labels
instance-attribute
modality = modality
instance-attribute
errors
property
has_explanations
property
recommended = XaiRecommender().recommend(modality=modality, model=model)
instance-attribute
__init__(model: Module, data: DataLoader, input_extractor: Optional[Callable] = None, label_extractor: Optional[Callable] = None, target_extractor: Optional[Callable] = None, target_labels: bool = False, sequence_dim: int = -1, mask_agg_dim: int = -2)
subscribe(callback)
fire(event)
reset_errors()
to_device(x)
run_batch(explainer_id: int, postprocessor_id: int, metric_id: int, data_ids: Optional[Sequence[int]] = None) -> dict
Runs the experiment for selected batch of data, explainer, postprocessor and metric.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
explainer_id
|
int
|
ID of explainer to use for the run. |
required |
postprocessor_id
|
int
|
ID of postprocessor to use for the run. |
required |
metrics_id
|
int
|
ID of metric to use for the run. |
required |
Returns:
Type | Description |
---|---|
dict
|
The dictionary of inputs, labels, outputs, targets, explainer, explanation, postprocessor, postprocessed, metric, and evaluation. |
This method orchestrates the experiment by configuring the manager, obtaining explainer and metric instances, processing data, generating explanations, and evaluating metrics. It then caches the results in the manager, and returns back to the user.
Note: The input parameters allow for flexibility in specifying subset of data, explainer, postprocessor and metric to process.
predict_batch(data_ids: Sequence[int])
Predicts results of the experiment for selected batch of data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to process. |
required |
Returns:
Type | Description |
---|---|
Batched model outputs corresponding to data ids. |
This method orchestrates the experiment by configuring the manager and processing data. It then caches the results in the manager, and returns back to the user.
explain_batch(data_ids: Sequence[int], explainer_id: int)
Explains selected batch of data within experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to process. |
required |
Returns:
Type | Description |
---|---|
Batched model explanations corresponding to data ids. |
This method orchestrates the experiment by configuring the manager, obtaining explainer instance, processing data, and generating explanations. It then caches the results in the manager, and returns back to the user.
postprocess_batch(data_ids: List[int], explainer_id: int, postprocessor_id: int)
Postprocesses selected batch of data within experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to postprocess. |
required |
explainer_id
|
int
|
An explainer ID to specify the explainer to use. |
required |
postprocessor_id
|
int
|
A postprocessor ID to specify the postprocessor to use. |
required |
Returns:
Type | Description |
---|---|
Batched postprocessed model explanations corresponding to data ids. |
This method orchestrates the experiment by configuring the manager, obtaining explainer instance, processing data, and generating explanations. It then caches the results in the manager, and returns back to the user.
evaluate_batch(data_ids: List[int], explainer_id: int, postprocessor_id: int, metric_id: int)
Evaluates selected batch of data within experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Sequence[int]
|
A sequence of data IDs to specify the subset of data to postprocess. |
required |
explainer_id
|
int
|
An explainer ID to specify the explainer to use. |
required |
postprocessor_id
|
int
|
A postprocessor ID to specify the postprocessor to use. |
required |
metric_id
|
int
|
A metric ID to evaluate the model explanations. |
required |
Returns:
Type | Description |
---|---|
Batched model evaluations corresponding to data ids. |
This method orchestrates the experiment by configuring the manager, obtaining explainer instance, processing data, generating explanations, and evaluating results. It then caches the results in the manager, and returns back to the user.
optimize(data_ids: Union[int, Sequence[int]], explainer_id: int, metric_id: int, direction: Literal['minimize', 'maximize'] = 'maximize', sampler: Literal['grid', 'random', 'tpe'] = 'tpe', n_trials: Optional[int] = None, timeout: Optional[float] = None, **kwargs)
Optimize experiment hyperparameters by processing data, generating explanations, evaluating with metrics, caching and retrieving the data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Union[int, Sequence[int]]
|
A single data ID or sequence of data IDs to specify the subset of data to process. |
required |
explainer_id
|
int
|
An explainer ID to specify the explainer to use. |
required |
metric_id
|
int
|
A metric ID to evaluate optimizer decisions. |
required |
direction
|
Literal['minimize', 'maximize']
|
A string to specify the direction of optimization. |
'maximize'
|
sampler
|
Literal['grid', 'random', 'tpe']
|
A string to specify the sampler to use for optimization. |
'tpe'
|
n_trials
|
Optional[int]
|
An integer to specify the number of trials for optimization. If none passed, the number of trials is inferred from |
None
|
timeout
|
Optional[float]
|
A float to specify the timeout for optimization. Ignored, if |
None
|
Returns:
Type | Description |
---|---|
The Experiment instance with updated results and state. |
This method orchestrates the experiment by configuring the manager, obtaining explainer and metric instances, processing data, generating explanations, and evaluating metrics. It then saves the results in the manager.
Note: The input parameters allow for flexibility in specifying subsets of data, explainers, and metrics to process. If not provided, the method processes all available data, explainers, postprocessors, and metrics.
get_inputs_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten last run input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened input data. |
This method retrieves input data using the input extractor and flattens it for further processing.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_all_inputs_flattened() -> Sequence[Tensor]
Retrieve and flatten all input data.
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened input data from all available data. |
This method retrieves input data from all available data points using the input extractor and flattens it.
get_labels_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten labels data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened labels data. |
This method retrieves label data using the label extractor and flattens it for further processing.
get_targets_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten target data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened target data. |
This method retrieves target data using the target extractor and flattens it for further processing.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_outputs_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Tensor]
Retrieve and flatten model outputs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Tensor]
|
Flattened model outputs. |
This method retrieves flattened model outputs using the manager's get_flat_outputs method.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_explanations_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Sequence[Tensor]]
Retrieve and flatten explanations from all explainers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Sequence[Tensor]]
|
Flattened explanations from all explainers. |
This method retrieves flattened explanations for each explainer using the manager's get_flat_explanations
method.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_evaluations_flattened(data_ids: Optional[Sequence[int]] = None) -> Sequence[Sequence[Sequence[Tensor]]]
Retrieve and flatten evaluations for all explainers and metrics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_ids
|
Optional[Sequence[int]]
|
A sequence of data IDs to specify the subset of data to process. |
None
|
Returns:
Type | Description |
---|---|
Sequence[Sequence[Sequence[Tensor]]]
|
Flattened evaluations for all explainers and metrics. |
This method retrieves flattened evaluations for each explainer and metric using the manager's get_flat_evaluations method.
Note: The input parameters allow for flexibility in specifying subsets of data to process. If not provided, the method processes all available data.
get_explainers_ranks() -> Optional[Sequence[Sequence[int]]]
Calculate and return rankings for explainers based on evaluations.
Returns:
Type | Description |
---|---|
Optional[Sequence[Sequence[int]]]
|
Rankings of explainers. Returns None if rankings cannot be calculated. |
This method calculates rankings for explainers based on evaluations and metric scores. It considers metric priorities and sorting preferences to produce rankings.