Skip to content

Modality

ImageModality

Bases: Modality

An extension of Modality class for Image domain with automatic explainers and evaluation metrics recommendation.

Parameters:

Name Type Description Default
channel_dim int

Target sequence dimension.

1
baseline_fn_selector Optional[FunctionSelector]

Selector of baselines for the modality's explainers. If None selected, BASELINE_FUNCTIONS_FOR_TIME_SERIES will be used.

None
feature_mask_fn_selector Optional[FunctionSelector]

Selector of feature masks for the modality's explainers. If None selected, FEATURE_MASK_FUNCTIONS_FOR_TIME_SERIES will be used.

None
pooling_fn_selector Optional[FunctionSelector]

Selector of pooling methods for the modality's explainers. If None selected, POOLING_FUNCTIONS_FOR_TIME_SERIES will be used.

None
normalization_fn_selector Optional[FunctionSelector]

Selector of normalization methods for the modality's explainers. If None selected, NORMALIZATION_FUNCTIONS_FOR_TIME_SERIES will be used.

None
Source code in pnpxai/core/modality/modality.py
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
class ImageModality(Modality):
    """
    An extension of Modality class for Image domain with automatic explainers and evaluation metrics recommendation.

    Parameters:
        channel_dim (int): Target sequence dimension.
        baseline_fn_selector (Optional[FunctionSelector]): Selector of baselines for the modality's explainers. If None selected, BASELINE_FUNCTIONS_FOR_TIME_SERIES will be used.
        feature_mask_fn_selector (Optional[FunctionSelector]): Selector of feature masks for the modality's explainers. If None selected, FEATURE_MASK_FUNCTIONS_FOR_TIME_SERIES will be used.
        pooling_fn_selector (Optional[FunctionSelector]): Selector of pooling methods for the modality's explainers. If None selected, POOLING_FUNCTIONS_FOR_TIME_SERIES will be used.
        normalization_fn_selector (Optional[FunctionSelector]): Selector of normalization methods for the modality's explainers. If None selected, NORMALIZATION_FUNCTIONS_FOR_TIME_SERIES will be used.
    """
    def __init__(
        self,
        channel_dim: int = 1,
        baseline_fn_selector: Optional[FunctionSelector] = None,
        feature_mask_fn_selector: Optional[FunctionSelector] = None,
        pooling_fn_selector: Optional[FunctionSelector] = None,
        normalization_fn_selector: Optional[FunctionSelector] = None,
    ):
        super(ImageModality, self).__init__(
            channel_dim,
            baseline_fn_selector=baseline_fn_selector or FunctionSelector(
                data=BASELINE_FUNCTIONS_FOR_IMAGE,
                default_kwargs={'dim': channel_dim},
            ),
            feature_mask_fn_selector=feature_mask_fn_selector or FunctionSelector(
                data=FEATURE_MASK_FUNCTIONS_FOR_IMAGE
            ),
            pooling_fn_selector=pooling_fn_selector or FunctionSelector(
                data=POOLING_FUNCTIONS_FOR_IMAGE,
                default_kwargs={'channel_dim': channel_dim},
            ),
            normalization_fn_selector=normalization_fn_selector or FunctionSelector(
                data=NORMALIZATION_FUNCTIONS_FOR_IMAGE
            ),
        )

    def get_default_baseline_fn(self) -> BaselineFunction:
        """
        Defines default baseline function for the modality's explainers.

        Returns:
            BaselineFunction: Zeros baseline function.
        """
        return self.baseline_fn_selector.select('zeros')

    def get_default_feature_mask_fn(self) -> FeatureMaskFunction:
        """
        Defines default feature mask function for the modality's explainers.

        Returns:
            FeatureMaskFunction: Felzenszwalb baseline function.
        """
        return self.feature_mask_fn_selector.select('felzenszwalb', scale=250)

    def get_default_postprocessors(self) -> List[PostProcessor]:
        """
        Defines default post-processors list for the modality's explainers.

        Returns:
            List[PostProcessor]: All available PostProcessors.
        """
        return [
            PostProcessor(
                pooling_fn=self.pooling_fn_selector.select(pm),
                normalization_fn=self.normalization_fn_selector.select(nm),
            ) for pm in self.pooling_fn_selector.choices
            for nm in self.normalization_fn_selector.choices
        ]

get_default_baseline_fn()

Defines default baseline function for the modality's explainers.

Returns:

Name Type Description
BaselineFunction BaselineFunction

Zeros baseline function.

Source code in pnpxai/core/modality/modality.py
164
165
166
167
168
169
170
171
def get_default_baseline_fn(self) -> BaselineFunction:
    """
    Defines default baseline function for the modality's explainers.

    Returns:
        BaselineFunction: Zeros baseline function.
    """
    return self.baseline_fn_selector.select('zeros')

get_default_feature_mask_fn()

Defines default feature mask function for the modality's explainers.

Returns:

Name Type Description
FeatureMaskFunction FeatureMaskFunction

Felzenszwalb baseline function.

Source code in pnpxai/core/modality/modality.py
173
174
175
176
177
178
179
180
def get_default_feature_mask_fn(self) -> FeatureMaskFunction:
    """
    Defines default feature mask function for the modality's explainers.

    Returns:
        FeatureMaskFunction: Felzenszwalb baseline function.
    """
    return self.feature_mask_fn_selector.select('felzenszwalb', scale=250)

get_default_postprocessors()

Defines default post-processors list for the modality's explainers.

Returns:

Type Description
List[PostProcessor]

List[PostProcessor]: All available PostProcessors.

Source code in pnpxai/core/modality/modality.py
182
183
184
185
186
187
188
189
190
191
192
193
194
195
def get_default_postprocessors(self) -> List[PostProcessor]:
    """
    Defines default post-processors list for the modality's explainers.

    Returns:
        List[PostProcessor]: All available PostProcessors.
    """
    return [
        PostProcessor(
            pooling_fn=self.pooling_fn_selector.select(pm),
            normalization_fn=self.normalization_fn_selector.select(nm),
        ) for pm in self.pooling_fn_selector.choices
        for nm in self.normalization_fn_selector.choices
    ]

Modality

Bases: ABC

An abstract class describing modality-specific workflow. The class is used to define both default and available explainers, baselines, feature masks, pooling methods, and normalization methods for the modality.

Parameters:

Name Type Description Default
channel_dim int

Target sequence dimension.

required
baseline_fn_selector Optional[FunctionSelector]

Selector of baselines for the modality's explainers. If None selected, all BASELINE_FUNCTIONS will be used.

None
feature_mask_fn_selector Optional[FunctionSelector]

Selector of feature masks for the modality's explainers. If None selected, all FEATURE_MASK_FUNCTIONS will be used.

None
pooling_fn_selector Optional[FunctionSelector]

Selector of pooling methods for the modality's explainers. If None selected, all POOLING_FUNCTIONS will be used.

None
normalization_fn_selector Optional[FunctionSelector]

Selector of normalization methods for the modality's explainers. If None selected, all NORMALIZATION_FUNCTIONS_FOR_IMAGE will be used.

None

Attributes:

Name Type Description
EXPLAINERS Tuple[Explainer]

Tuple of all available explainers.

Source code in pnpxai/core/modality/modality.py
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
class Modality(ABC):
    """
    An abstract class describing modality-specific workflow. The class is used to define both default and available
    explainers, baselines, feature masks, pooling methods, and normalization methods for the modality.

    Parameters:
        channel_dim (int): Target sequence dimension.
        baseline_fn_selector (Optional[FunctionSelector]): Selector of baselines for the modality's explainers. If None selected, all BASELINE_FUNCTIONS will be used.
        feature_mask_fn_selector (Optional[FunctionSelector]): Selector of feature masks for the modality's explainers. If None selected, all FEATURE_MASK_FUNCTIONS will be used.
        pooling_fn_selector (Optional[FunctionSelector]): Selector of pooling methods for the modality's explainers. If None selected, all POOLING_FUNCTIONS will be used.
        normalization_fn_selector (Optional[FunctionSelector]): Selector of normalization methods for the modality's explainers. If None selected, all NORMALIZATION_FUNCTIONS_FOR_IMAGE will be used.

    Attributes:
        EXPLAINERS (Tuple[Explainer]): Tuple of all available explainers.
    """

    # Copies the tuple without preserving the reference
    EXPLAINERS = tuple(iter(AVAILABLE_EXPLAINERS))

    def __init__(
        self,
        channel_dim: int,
        baseline_fn_selector: Optional[FunctionSelector] = None,
        feature_mask_fn_selector: Optional[FunctionSelector] = None,
        pooling_fn_selector: Optional[FunctionSelector] = None,
        normalization_fn_selector: Optional[FunctionSelector] = None,
        **kwargs
    ):
        self.channel_dim = channel_dim
        self.baseline_fn_selector = baseline_fn_selector or FunctionSelector(BASELINE_FUNCTIONS)
        self.feature_mask_fn_selector = feature_mask_fn_selector or FunctionSelector(FEATURE_MASK_FUNCTIONS)
        self.pooling_fn_selector = pooling_fn_selector or FunctionSelector(POOLING_FUNCTIONS)
        self.normalization_fn_selector = normalization_fn_selector or FunctionSelector(NORMALIZATION_FUNCTIONS_FOR_IMAGE)

    @abstractmethod    
    def get_default_feature_mask_fn(self) -> Callable:
        """
        Defines default baseline function for the modality's explainers.

        Returns:
            BaselineFunction: Zeros baseline function.
        """
        raise NotImplementedError

    @abstractmethod
    def get_default_baseline_fn(self) -> Callable:
        """
        Defines default feature mask function for the modality's explainers.

        Returns:
            FeatureMaskFunction: No Mask baseline function.
        """
        raise NotImplementedError

    @abstractmethod
    def get_default_postprocessors(self) -> List[Callable]:
        """
        Defines default post-processors list for the modality's explainers.

        Returns:
            List[PostProcessor]: Identity PostProcessors.
        """
        raise NotImplementedError

    def map_fn_selector(self, method_type: Type[Any]) -> Dict[Type[UtilFunction], callable]:
        """
        Selects custom optimizable hyperparameter functions.

        Returns:
            Dict[Type[UtilFunction], callable]: Identity PostProcessors.
        """
        return {
            BaselineFunction: self.baseline_fn_selector,
            FeatureMaskFunction: self.feature_mask_fn_selector,
            PoolingFunction: self.pooling_fn_selector,
            NormalizationFunction: self.normalization_fn_selector,
        }.get(method_type, None)

get_default_baseline_fn() abstractmethod

Defines default feature mask function for the modality's explainers.

Returns:

Name Type Description
FeatureMaskFunction Callable

No Mask baseline function.

Source code in pnpxai/core/modality/modality.py
 92
 93
 94
 95
 96
 97
 98
 99
100
@abstractmethod
def get_default_baseline_fn(self) -> Callable:
    """
    Defines default feature mask function for the modality's explainers.

    Returns:
        FeatureMaskFunction: No Mask baseline function.
    """
    raise NotImplementedError

get_default_feature_mask_fn() abstractmethod

Defines default baseline function for the modality's explainers.

Returns:

Name Type Description
BaselineFunction Callable

Zeros baseline function.

Source code in pnpxai/core/modality/modality.py
82
83
84
85
86
87
88
89
90
@abstractmethod    
def get_default_feature_mask_fn(self) -> Callable:
    """
    Defines default baseline function for the modality's explainers.

    Returns:
        BaselineFunction: Zeros baseline function.
    """
    raise NotImplementedError

get_default_postprocessors() abstractmethod

Defines default post-processors list for the modality's explainers.

Returns:

Type Description
List[Callable]

List[PostProcessor]: Identity PostProcessors.

Source code in pnpxai/core/modality/modality.py
102
103
104
105
106
107
108
109
110
@abstractmethod
def get_default_postprocessors(self) -> List[Callable]:
    """
    Defines default post-processors list for the modality's explainers.

    Returns:
        List[PostProcessor]: Identity PostProcessors.
    """
    raise NotImplementedError

map_fn_selector(method_type)

Selects custom optimizable hyperparameter functions.

Returns:

Type Description
Dict[Type[UtilFunction], callable]

Dict[Type[UtilFunction], callable]: Identity PostProcessors.

Source code in pnpxai/core/modality/modality.py
112
113
114
115
116
117
118
119
120
121
122
123
124
def map_fn_selector(self, method_type: Type[Any]) -> Dict[Type[UtilFunction], callable]:
    """
    Selects custom optimizable hyperparameter functions.

    Returns:
        Dict[Type[UtilFunction], callable]: Identity PostProcessors.
    """
    return {
        BaselineFunction: self.baseline_fn_selector,
        FeatureMaskFunction: self.feature_mask_fn_selector,
        PoolingFunction: self.pooling_fn_selector,
        NormalizationFunction: self.normalization_fn_selector,
    }.get(method_type, None)

TextModality

Bases: Modality

An extension of Modality class for Text domain with automatic explainers and evaluation metrics recommendation.

Parameters:

Name Type Description Default
channel_dim int

Target sequence dimension.

-1
baseline_fn_selector Optional[FunctionSelector]

Selector of baselines for the modality's explainers. If None selected, BASELINE_FUNCTIONS_FOR_TEXT will be used.

None
feature_mask_fn_selector Optional[FunctionSelector]

Selector of feature masks for the modality's explainers. If None selected, FEATURE_MASK_FUNCTIONS_FOR_TEXT will be used.

None
pooling_fn_selector Optional[FunctionSelector]

Selector of pooling methods for the modality's explainers. If None selected, POOLING_FUNCTIONS_FOR_TEXT will be used.

None
normalization_fn_selector Optional[FunctionSelector]

Selector of normalization methods for the modality's explainers. If None selected, NORMALIZATION_FUNCTIONS_FOR_TEXT will be used.

None
Source code in pnpxai/core/modality/modality.py
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
class TextModality(Modality):
    """
    An extension of Modality class for Text domain with automatic explainers and evaluation metrics recommendation.

    Parameters:
        channel_dim (int): Target sequence dimension.
        baseline_fn_selector (Optional[FunctionSelector]): Selector of baselines for the modality's explainers. If None selected, BASELINE_FUNCTIONS_FOR_TEXT will be used.
        feature_mask_fn_selector (Optional[FunctionSelector]): Selector of feature masks for the modality's explainers. If None selected, FEATURE_MASK_FUNCTIONS_FOR_TEXT will be used.
        pooling_fn_selector (Optional[FunctionSelector]): Selector of pooling methods for the modality's explainers. If None selected, POOLING_FUNCTIONS_FOR_TEXT will be used.
        normalization_fn_selector (Optional[FunctionSelector]): Selector of normalization methods for the modality's explainers. If None selected, NORMALIZATION_FUNCTIONS_FOR_TEXT will be used.
    """
    EXPLAINERS = (
        Gradient,
        GradientXInput,
        SmoothGrad,
        VarGrad,
        IntegratedGradients,
        LRPUniformEpsilon,
        LRPEpsilonPlus,
        LRPEpsilonGammaBox,
        LRPEpsilonAlpha2Beta1,
        KernelShap,
        Lime,
    )

    def __init__(
        self,
        channel_dim: int = -1,
        mask_token_id: int = 0,
        baseline_fn_selector: Optional[FunctionSelector] = None,
        feature_mask_fn_selector: Optional[FunctionSelector] = None,
        pooling_fn_selector: Optional[FunctionSelector] = None,
        normalization_fn_selector: Optional[FunctionSelector] = None,
    ):
        super(TextModality, self).__init__(
            channel_dim,
            baseline_fn_selector=baseline_fn_selector or FunctionSelector(
                data=BASELINE_FUNCTIONS_FOR_TEXT,
                default_kwargs={'token_id': mask_token_id},
            ),
            feature_mask_fn_selector=feature_mask_fn_selector or FunctionSelector(
                data=FEATURE_MASK_FUNCTIONS_FOR_TEXT
            ),
            pooling_fn_selector=pooling_fn_selector or FunctionSelector(
                data=POOLING_FUNCTIONS_FOR_TEXT,
                default_kwargs={'channel_dim': channel_dim},
            ),
            normalization_fn_selector=normalization_fn_selector or FunctionSelector(
                data=NORMALIZATION_FUNCTIONS_FOR_TEXT,
            ),
        )
        self.mask_token_id = mask_token_id

    def get_default_baseline_fn(self) -> BaselineFunction:
        """
        Defines default baseline function for the modality's explainers.

        Returns:
            BaselineFunction: Token baseline function.
        """
        return self.baseline_fn_selector.select('token')

    def get_default_feature_mask_fn(self) -> FeatureMaskFunction:
        """
        Defines default feature mask function for the modality's explainers.

        Returns:
            FeatureMaskFunction: No Mask baseline function.
        """
        return self.feature_mask_fn_selector.select('no_mask_1d')

    def get_default_postprocessors(self) -> List[PostProcessor]:
        """
        Defines default post-processors list for the modality's explainers.

        Returns:
            List[PostProcessor]: All PostProcessors.
        """
        return [
            PostProcessor(
                pooling_fn=self.pooling_fn_selector.select(pm),
                normalization_fn=self.normalization_fn_selector.select(nm),
            ) for pm in self.pooling_fn_selector.choices
            for nm in self.normalization_fn_selector.choices
        ]

get_default_baseline_fn()

Defines default baseline function for the modality's explainers.

Returns:

Name Type Description
BaselineFunction BaselineFunction

Token baseline function.

Source code in pnpxai/core/modality/modality.py
251
252
253
254
255
256
257
258
def get_default_baseline_fn(self) -> BaselineFunction:
    """
    Defines default baseline function for the modality's explainers.

    Returns:
        BaselineFunction: Token baseline function.
    """
    return self.baseline_fn_selector.select('token')

get_default_feature_mask_fn()

Defines default feature mask function for the modality's explainers.

Returns:

Name Type Description
FeatureMaskFunction FeatureMaskFunction

No Mask baseline function.

Source code in pnpxai/core/modality/modality.py
260
261
262
263
264
265
266
267
def get_default_feature_mask_fn(self) -> FeatureMaskFunction:
    """
    Defines default feature mask function for the modality's explainers.

    Returns:
        FeatureMaskFunction: No Mask baseline function.
    """
    return self.feature_mask_fn_selector.select('no_mask_1d')

get_default_postprocessors()

Defines default post-processors list for the modality's explainers.

Returns:

Type Description
List[PostProcessor]

List[PostProcessor]: All PostProcessors.

Source code in pnpxai/core/modality/modality.py
269
270
271
272
273
274
275
276
277
278
279
280
281
282
def get_default_postprocessors(self) -> List[PostProcessor]:
    """
    Defines default post-processors list for the modality's explainers.

    Returns:
        List[PostProcessor]: All PostProcessors.
    """
    return [
        PostProcessor(
            pooling_fn=self.pooling_fn_selector.select(pm),
            normalization_fn=self.normalization_fn_selector.select(nm),
        ) for pm in self.pooling_fn_selector.choices
        for nm in self.normalization_fn_selector.choices
    ]

TimeSeriesModality

Bases: Modality

An extension of Modality class for Time Series domain with automatic explainers and evaluation metrics recommendation.

Parameters:

Name Type Description Default
channel_dim int

Target sequence dimension.

-1
baseline_fn_selector Optional[FunctionSelector]

Selector of baselines for the modality's explainers. If None selected, BASELINE_FUNCTIONS_FOR_TIME_SERIES will be used.

None
feature_mask_fn_selector Optional[FunctionSelector]

Selector of feature masks for the modality's explainers. If None selected, FEATURE_MASK_FUNCTIONS_FOR_TIME_SERIES will be used.

None
pooling_fn_selector Optional[FunctionSelector]

Selector of pooling methods for the modality's explainers. If None selected, POOLING_FUNCTIONS_FOR_TIME_SERIES will be used.

None
normalization_fn_selector Optional[FunctionSelector]

Selector of normalization methods for the modality's explainers. If None selected, NORMALIZATION_FUNCTIONS_FOR_TIME_SERIES will be used.

None
Source code in pnpxai/core/modality/modality.py
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
class TimeSeriesModality(Modality):
    """
    An extension of Modality class for Time Series domain with automatic explainers and evaluation metrics recommendation.

    Parameters:
        channel_dim (int): Target sequence dimension.
        baseline_fn_selector (Optional[FunctionSelector]): Selector of baselines for the modality's explainers. If None selected, BASELINE_FUNCTIONS_FOR_TIME_SERIES will be used.
        feature_mask_fn_selector (Optional[FunctionSelector]): Selector of feature masks for the modality's explainers. If None selected, FEATURE_MASK_FUNCTIONS_FOR_TIME_SERIES will be used.
        pooling_fn_selector (Optional[FunctionSelector]): Selector of pooling methods for the modality's explainers. If None selected, POOLING_FUNCTIONS_FOR_TIME_SERIES will be used.
        normalization_fn_selector (Optional[FunctionSelector]): Selector of normalization methods for the modality's explainers. If None selected, NORMALIZATION_FUNCTIONS_FOR_TIME_SERIES will be used.
    """
    def __init__(
        self,
        channel_dim: int = -1,
        baseline_fn_selector: Optional[FunctionSelector] = None,
        feature_mask_fn_selector: Optional[FunctionSelector] = None,
        pooling_fn_selector: Optional[FunctionSelector] = None,
        normalization_fn_selector: Optional[FunctionSelector] = None,
    ):
        super(TimeSeriesModality, self).__init__(
            channel_dim,
            baseline_fn_selector=baseline_fn_selector or FunctionSelector(
                data=BASELINE_FUNCTIONS_FOR_TIME_SERIES, # [zeros, mean]
                default_kwargs={'dim': channel_dim},
            ),
            feature_mask_fn_selector=feature_mask_fn_selector or FunctionSelector(
                data=FEATURE_MASK_FUNCTIONS_FOR_TIME_SERIES,
            ),
            pooling_fn_selector=pooling_fn_selector or FunctionSelector(
                data=POOLING_FUNCTIONS_FOR_TIME_SERIES, # [identity]
                default_kwargs={'channel_dim': channel_dim},
            ),
            normalization_fn_selector=normalization_fn_selector or FunctionSelector(
                data=NORMALIZATION_FUNCTIONS_FOR_TIME_SERIES, # [identity]
            ),
        )

    def get_default_baseline_fn(self) -> BaselineFunction:
        """
        Defines default baseline function for the modality's explainers.

        Returns:
            BaselineFunction: Zeros baseline function.
        """
        return self.baseline_fn_selector.select('zeros')

    def get_default_feature_mask_fn(self) -> FeatureMaskFunction:
        """
        Defines default feature mask function for the modality's explainers.

        Returns:
            FeatureMaskFunction: No Mask baseline function.
        """
        return self.feature_mask_fn_selector.select('no_mask_2d')

    def get_default_postprocessors(self) -> List[PostProcessor]:
        """
        Defines default post-processors list for the modality's explainers.

        Returns:
            List[PostProcessor]: Identity PostProcessors.
        """
        return [
            PostProcessor(
                pooling_fn=self.pooling_fn_selector.select(pm),
                normalization_fn=self.normalization_fn_selector.select(nm),
            ) for pm in self.pooling_fn_selector.choices
            for nm in self.normalization_fn_selector.choices
        ]

get_default_baseline_fn()

Defines default baseline function for the modality's explainers.

Returns:

Name Type Description
BaselineFunction BaselineFunction

Zeros baseline function.

Source code in pnpxai/core/modality/modality.py
322
323
324
325
326
327
328
329
def get_default_baseline_fn(self) -> BaselineFunction:
    """
    Defines default baseline function for the modality's explainers.

    Returns:
        BaselineFunction: Zeros baseline function.
    """
    return self.baseline_fn_selector.select('zeros')

get_default_feature_mask_fn()

Defines default feature mask function for the modality's explainers.

Returns:

Name Type Description
FeatureMaskFunction FeatureMaskFunction

No Mask baseline function.

Source code in pnpxai/core/modality/modality.py
331
332
333
334
335
336
337
338
def get_default_feature_mask_fn(self) -> FeatureMaskFunction:
    """
    Defines default feature mask function for the modality's explainers.

    Returns:
        FeatureMaskFunction: No Mask baseline function.
    """
    return self.feature_mask_fn_selector.select('no_mask_2d')

get_default_postprocessors()

Defines default post-processors list for the modality's explainers.

Returns:

Type Description
List[PostProcessor]

List[PostProcessor]: Identity PostProcessors.

Source code in pnpxai/core/modality/modality.py
340
341
342
343
344
345
346
347
348
349
350
351
352
353
def get_default_postprocessors(self) -> List[PostProcessor]:
    """
    Defines default post-processors list for the modality's explainers.

    Returns:
        List[PostProcessor]: Identity PostProcessors.
    """
    return [
        PostProcessor(
            pooling_fn=self.pooling_fn_selector.select(pm),
            normalization_fn=self.normalization_fn_selector.select(nm),
        ) for pm in self.pooling_fn_selector.choices
        for nm in self.normalization_fn_selector.choices
    ]