GradCam
GradCam
Bases: Explainer
GradCAM explainer.
Supported Modules: Convolution
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Module
|
The PyTorch model for which attribution is to be computed. |
required |
interpolate_mode |
Optional[str]
|
The interpolation mode used by the explainer. Available methods are: |
'bilinear'
|
**kwargs |
Keyword arguments that are forwarded to the base implementation of the Explainer |
{}
|
Reference
Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, Dhruv Batra. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization.
Source code in pnpxai/explainers/grad_cam.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
|
attribute(inputs, targets)
Computes attributions for the given inputs and targets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs |
Tensor
|
The input data. |
required |
targets |
Tensor
|
The target labels for the inputs. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: The result of the explanation. |
Source code in pnpxai/explainers/grad_cam.py
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
|
get_tunables()
Provides Tunable parameters for the optimizer
Tunable parameters
interpolate_mode
(str): Value can be selected of "bilinear"
and "bicubic"
Source code in pnpxai/explainers/grad_cam.py
85 86 87 88 89 90 91 92 93 94 |
|