Skip to content

LRP

LRPBase

Bases: ZennitExplainer

Base class for LRPUniformEpsilon, LRPEpsilonGammaBox, LRPEpsilonPlus, and LRPEpsilonAlpha2Beta1 explainers.

Parameters:

Name Type Description Default
model Module

The PyTorch model for which attribution is to be computed.

required
zennit_composite Composite

The Composite object applies canonizers and register hooks to modules. One Composite instance may only be applied to a single module at a time.

required
layer Optional[Union[Union[str, Module], Sequence[Union[str, Module]]]]

The target module to be explained

None
n_classes Optional[int]

Number of classes

None
forward_arg_extractor Optional[ForwardArgumentExtractor]

A function that extracts forward arguments from the input batch(s) where the attribution scores are assigned.

None
additional_forward_arg_extractor Optional[ForwardArgumentExtractor]

A secondary function that extract additional forward arguments from the input batch(s).

None
**kwargs

Keyword arguments that are forwarded to the base implementation of the Explainer

required
Reference

Bach S., Binder A., Montavon G., Klauschen F., M¨uller K.-R., and Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation.

Source code in pnpxai/explainers/lrp.py
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
class LRPBase(ZennitExplainer):
    """
    Base class for `LRPUniformEpsilon`, `LRPEpsilonGammaBox`, `LRPEpsilonPlus`, and `LRPEpsilonAlpha2Beta1` explainers.

    Parameters:
        model (Module): The PyTorch model for which attribution is to be computed.
        zennit_composite (Composite): The Composite object applies canonizers and register hooks to modules. One Composite instance may only be applied to a single module at a time.
        layer (Optional[Union[Union[str, Module], Sequence[Union[str, Module]]]]): The target module to be explained
        n_classes (Optional[int]): Number of classes
        forward_arg_extractor: A function that extracts forward arguments from the input batch(s) where the attribution scores are assigned.
        additional_forward_arg_extractor: A secondary function that extract additional forward arguments from the input batch(s).        
        **kwargs: Keyword arguments that are forwarded to the base implementation of the Explainer

    Reference:
        Bach S., Binder A., Montavon G., Klauschen F., M¨uller K.-R., and Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation.
    """
    def __init__(
        self,
        model: Module,
        zennit_composite: Composite,
        forward_arg_extractor: Optional[ForwardArgumentExtractor] = None,
        additional_forward_arg_extractor: Optional[ForwardArgumentExtractor] = None,
        layer: Optional[TargetLayerOrListOfTargetLayers] = None,
        n_classes: Optional[int] = None,
    ) -> None:
        super().__init__(
            model,
            forward_arg_extractor,
            additional_forward_arg_extractor,
            n_classes
        )
        self.zennit_composite = zennit_composite
        self.layer = layer

    def _layer_explainer(self, model: Union[Module, fx.GraphModule]) -> LayerGradient:
        wrapped_model = captum_wrap_model_input(model)
        stack = self.layer.copy() if isinstance(
            self.layer, Sequence) else [self.layer]
        layers = []
        while stack:
            layer = stack.pop(0)
            if isinstance(layer, str):
                layers.append(wrapped_model.input_maps[layer])
                continue
            if isinstance(model, fx.GraphModule):
                child_nodes = []
                found = False
                for node in model.graph.nodes:
                    if node.op == "call_module":
                        try:
                            module = self.model.get_submodule(node.target)
                        except AttributeError:
                            continue
                        if module is layer:
                            layers.append(layer)
                            found = True
                            break
                        path_to_node = node.target.split(".")[:-1]
                        if len(path_to_node) == 0:
                            continue
                        ancestors = [
                            self.model.get_submodule(
                                ".".join(path_to_node[:i+1]))
                            for i in range(len(path_to_node))
                        ]
                        if any(anc is layer for anc in ancestors):
                            child_nodes.append(node)
                if not found:
                    last_child = self.model.get_submodule(
                        child_nodes[-1].target)
                    layers.append(last_child)
            elif isinstance(model, Module):
                layers.append(layer)
        if len(layers) == 1:
            layers = layers[0]
        return LayerGradient(
            model=wrapped_model,
            layer=layers,
            composite=self.zennit_composite,
        )

    def _explainer(self, model) -> Gradient:
        return Gradient(
            model=model,
            composite=self.zennit_composite
        )

    def explainer(self, model) -> Union[Gradient, LayerGradient]:
        if self.layer is None:
            return self._explainer(model)
        return self._layer_explainer(model)

    def attribute(
        self,
        inputs: Union[Tensor, Tuple[Tensor]],
        targets: Tensor
    ) -> Union[Tensor, Tuple[Tensor]]:
        """
        Computes attributions for the given inputs and targets.

        Args:
            inputs (torch.Tensor): The input data.
            targets (torch.Tensor): The target labels for the inputs.

        Returns:
            torch.Tensor: The result of the explanation.
        """
        model = _replace_add_function_with_sum_module(self.model)
        forward_args, additional_forward_args = self._extract_forward_args(
            inputs)
        with self.explainer(model=model) as attributor:
            attrs = attributor.forward(
                forward_args,
                targets,
                additional_forward_args,
            )
        return attrs

attribute(inputs, targets)

Computes attributions for the given inputs and targets.

Parameters:

Name Type Description Default
inputs Tensor

The input data.

required
targets Tensor

The target labels for the inputs.

required

Returns:

Type Description
Union[Tensor, Tuple[Tensor]]

torch.Tensor: The result of the explanation.

Source code in pnpxai/explainers/lrp.py
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
def attribute(
    self,
    inputs: Union[Tensor, Tuple[Tensor]],
    targets: Tensor
) -> Union[Tensor, Tuple[Tensor]]:
    """
    Computes attributions for the given inputs and targets.

    Args:
        inputs (torch.Tensor): The input data.
        targets (torch.Tensor): The target labels for the inputs.

    Returns:
        torch.Tensor: The result of the explanation.
    """
    model = _replace_add_function_with_sum_module(self.model)
    forward_args, additional_forward_args = self._extract_forward_args(
        inputs)
    with self.explainer(model=model) as attributor:
        attrs = attributor.forward(
            forward_args,
            targets,
            additional_forward_args,
        )
    return attrs

LRPEpsilonAlpha2Beta1

Bases: LRPBase

LRPEpsilonAlpha2Beta1 explainer.

Supported Modules: Convolution

Parameters:

Name Type Description Default
model Module

The PyTorch model for which attribution is to be computed.

required
epsilon Union[float, Callable[[Tensor], Tensor]]

The epsilon value.

1e-06
stabilizer Union[float, Callable[[Tensor], Tensor]]

The stabilizer value

1e-06
zennit_canonizers Optional[List[Canonizer]]

An optional list of canonizers. Canonizers modify modules temporarily such that certain attribution rules can properly be applied.

None
layer Optional[Union[Union[str, Module], Sequence[Union[str, Module]]]]

The target module to be explained

None
n_classes Optional[int]

Number of classes

None
**kwargs

Keyword arguments that are forwarded to the base implementation of the Explainer

required
Source code in pnpxai/explainers/lrp.py
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
class LRPEpsilonAlpha2Beta1(LRPBase):
    """
    LRPEpsilonAlpha2Beta1 explainer.

    Supported Modules: `Convolution`

    Parameters:
        model (Module): The PyTorch model for which attribution is to be computed.
        epsilon (Union[float, Callable[[Tensor], Tensor]]): The epsilon value.
        stabilizer (Union[float, Callable[[Tensor], Tensor]]): The stabilizer value
        zennit_canonizers (Optional[List[Canonizer]]): An optional list of canonizers. Canonizers modify modules temporarily such that certain attribution rules can properly be applied.
        layer (Optional[Union[Union[str, Module], Sequence[Union[str, Module]]]]): The target module to be explained
        n_classes (Optional[int]): Number of classes
        **kwargs: Keyword arguments that are forwarded to the base implementation of the Explainer
    """

    SUPPORTED_MODULES = [Convolution]

    def __init__(
        self,
        model: Module,
        epsilon: Union[float, Callable[[Tensor], Tensor]] = 1e-6,
        stabilizer: Union[float, Callable[[Tensor], Tensor]] = 1e-6,
        zennit_canonizers: Optional[List[Canonizer]] = None,
        forward_arg_extractor: Optional[ForwardArgumentExtractor] = None,
        additional_forward_arg_extractor: Optional[ForwardArgumentExtractor] = None,
        layer: Optional[TargetLayerOrListOfTargetLayers] = None,
        n_classes: Optional[int] = None
    ) -> None:
        self.epsilon = epsilon
        self.stabilizer = stabilizer
        self.zennit_canonizers = zennit_canonizers

        zennit_composite = _get_epsilon_alpha2_beta1_composite(
            epsilon, stabilizer, zennit_canonizers)
        super().__init__(
            model,
            zennit_composite,
            forward_arg_extractor,
            additional_forward_arg_extractor,
            layer,
            n_classes
        )

    def get_tunables(self) -> Dict[str, Tuple[type, dict]]:
        """
            Provides Tunable parameters for the optimizer

            Tunable parameters:
                `epsilon` (float): Value can be selected in the range of `range(1e-6, 1)`
        """
        return {
            'epsilon': (float, {"low": 1e-6, "high": 1, "log": True}),
        }

get_tunables()

Provides Tunable parameters for the optimizer

Tunable parameters

epsilon (float): Value can be selected in the range of range(1e-6, 1)

Source code in pnpxai/explainers/lrp.py
376
377
378
379
380
381
382
383
384
385
def get_tunables(self) -> Dict[str, Tuple[type, dict]]:
    """
        Provides Tunable parameters for the optimizer

        Tunable parameters:
            `epsilon` (float): Value can be selected in the range of `range(1e-6, 1)`
    """
    return {
        'epsilon': (float, {"low": 1e-6, "high": 1, "log": True}),
    }

LRPEpsilonGammaBox

Bases: LRPBase

LRPEpsilonGammaBox explainer.

Supported Modules: Convolution

Parameters:

Name Type Description Default
model Module

The PyTorch model for which attribution is to be computed.

required
low float

The lowest possible value for computing gamma box

-3.0
high float

The highest possible value for computing gamma box

3.0
gamma float

The gamma value for computing gamma box

0.25
epsilon Union[float, Callable[[Tensor], Tensor]]

The epsilon value.

1e-06
stabilizer Union[float, Callable[[Tensor], Tensor]]

The stabilizer value

1e-06
zennit_canonizers Optional[List[Canonizer]]

An optional list of canonizers. Canonizers modify modules temporarily such that certain attribution rules can properly be applied.

None
layer Optional[Union[Union[str, Module], Sequence[Union[str, Module]]]]

The target module to be explained

None
n_classes Optional[int]

Number of classes

None
**kwargs

Keyword arguments that are forwarded to the base implementation of the Explainer

required
Source code in pnpxai/explainers/lrp.py
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
class LRPEpsilonGammaBox(LRPBase):
    """
    LRPEpsilonGammaBox explainer.

    Supported Modules: `Convolution`

    Parameters:
        model (Module): The PyTorch model for which attribution is to be computed.
        low (float): The lowest possible value for computing gamma box
        high (float): The highest possible value for computing gamma box
        gamma (float): The gamma value for computing gamma box
        epsilon (Union[float, Callable[[Tensor], Tensor]]): The epsilon value.
        stabilizer (Union[float, Callable[[Tensor], Tensor]]): The stabilizer value
        zennit_canonizers (Optional[List[Canonizer]]): An optional list of canonizers. Canonizers modify modules temporarily such that certain attribution rules can properly be applied.
        layer (Optional[Union[Union[str, Module], Sequence[Union[str, Module]]]]): The target module to be explained
        n_classes (Optional[int]): Number of classes
        **kwargs: Keyword arguments that are forwarded to the base implementation of the Explainer
    """

    SUPPORTED_MODULES = [Convolution]

    def __init__(
        self,
        model: Module,
        low: float = -3.,
        high: float = 3.,
        epsilon: Union[float, Callable[[Tensor], Tensor]] = 1e-6,
        gamma: float = .25,
        stabilizer: Union[float, Callable[[Tensor], Tensor]] = 1e-6,
        zennit_canonizers: Optional[List[Canonizer]] = None,
        forward_arg_extractor: Optional[ForwardArgumentExtractor] = None,
        additional_forward_arg_extractor: Optional[ForwardArgumentExtractor] = None,
        layer: Optional[TargetLayerOrListOfTargetLayers] = None,
        n_classes: Optional[int] = None,
    ) -> None:
        self.low = low
        self.high = high
        self.epsilon = epsilon
        self.gamma = gamma
        self.stabilizer = stabilizer
        self.zennit_canonizers = zennit_canonizers

        zennit_composite = _get_epsilon_gamma_box_composite(
            low, high, epsilon, gamma, stabilizer, zennit_canonizers)
        super().__init__(
            model,
            zennit_composite,
            forward_arg_extractor,
            additional_forward_arg_extractor,
            layer,
            n_classes
        )

    def get_tunables(self) -> Dict[str, Tuple[type, dict]]:
        """
            Provides Tunable parameters for the optimizer

            Tunable parameters:
                `epsilon` (float): Value can be selected in the range of `range(1e-6, 1)`

                `gamma` (float): Value can be selected in the range of `range(1e-6, 1)`
        """
        return {
            'epsilon': (float, {"low": 1e-6, "high": 1, "log": True}),
            'gamma': (float, {"low": 1e-6, "high": 1, "log": True}),
        }

get_tunables()

Provides Tunable parameters for the optimizer

Tunable parameters

epsilon (float): Value can be selected in the range of range(1e-6, 1)

gamma (float): Value can be selected in the range of range(1e-6, 1)

Source code in pnpxai/explainers/lrp.py
261
262
263
264
265
266
267
268
269
270
271
272
273
def get_tunables(self) -> Dict[str, Tuple[type, dict]]:
    """
        Provides Tunable parameters for the optimizer

        Tunable parameters:
            `epsilon` (float): Value can be selected in the range of `range(1e-6, 1)`

            `gamma` (float): Value can be selected in the range of `range(1e-6, 1)`
    """
    return {
        'epsilon': (float, {"low": 1e-6, "high": 1, "log": True}),
        'gamma': (float, {"low": 1e-6, "high": 1, "log": True}),
    }

LRPEpsilonPlus

Bases: LRPBase

LRPEpsilonPlus explainer.

Supported Modules: Convolution

Parameters:

Name Type Description Default
model Module

The PyTorch model for which attribution is to be computed.

required
epsilon Union[float, Callable[[Tensor], Tensor]]

The epsilon value.

1e-06
stabilizer Union[float, Callable[[Tensor], Tensor]]

The stabilizer value

1e-06
zennit_canonizers Optional[List[Canonizer]]

An optional list of canonizers. Canonizers modify modules temporarily such that certain attribution rules can properly be applied.

None
layer Optional[Union[Union[str, Module], Sequence[Union[str, Module]]]]

The target module to be explained

None
n_classes Optional[int]

Number of classes

None
**kwargs

Keyword arguments that are forwarded to the base implementation of the Explainer

required
Source code in pnpxai/explainers/lrp.py
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
class LRPEpsilonPlus(LRPBase):
    """
    LRPEpsilonPlus explainer.

    Supported Modules: `Convolution`

    Parameters:
        model (Module): The PyTorch model for which attribution is to be computed.
        epsilon (Union[float, Callable[[Tensor], Tensor]]): The epsilon value.
        stabilizer (Union[float, Callable[[Tensor], Tensor]]): The stabilizer value
        zennit_canonizers (Optional[List[Canonizer]]): An optional list of canonizers. Canonizers modify modules temporarily such that certain attribution rules can properly be applied.
        layer (Optional[Union[Union[str, Module], Sequence[Union[str, Module]]]]): The target module to be explained
        n_classes (Optional[int]): Number of classes
        **kwargs: Keyword arguments that are forwarded to the base implementation of the Explainer
    """

    SUPPORTED_MODULES = [Convolution]

    def __init__(
        self,
        model: Module,
        epsilon: Union[float, Callable[[Tensor], Tensor]] = 1e-6,
        stabilizer: Union[float, Callable[[Tensor], Tensor]] = 1e-6,
        zennit_canonizers: Optional[List[Canonizer]] = None,
        forward_arg_extractor: Optional[ForwardArgumentExtractor] = None,
        additional_forward_arg_extractor: Optional[ForwardArgumentExtractor] = None,
        layer: Optional[TargetLayerOrListOfTargetLayers] = None,
        n_classes: Optional[int] = None
    ) -> None:
        self.epsilon = epsilon
        self.stabilizer = stabilizer
        self.zennit_canonizers = zennit_canonizers

        zennit_composite = _get_epsilon_plus_composite(
            epsilon, stabilizer, zennit_canonizers)
        super().__init__(
            model,
            zennit_composite,
            forward_arg_extractor,
            additional_forward_arg_extractor,
            layer,
            n_classes
        )

    def get_tunables(self) -> Dict[str, Tuple[type, dict]]:
        """
            Provides Tunable parameters for the optimizer

            Tunable parameters:
                `epsilon` (float): Value can be selected in the range of `range(1e-6, 1)`
        """
        return {
            'epsilon': (float, {"low": 1e-6, "high": 1, "log": True}),
        }

get_tunables()

Provides Tunable parameters for the optimizer

Tunable parameters

epsilon (float): Value can be selected in the range of range(1e-6, 1)

Source code in pnpxai/explainers/lrp.py
320
321
322
323
324
325
326
327
328
329
def get_tunables(self) -> Dict[str, Tuple[type, dict]]:
    """
        Provides Tunable parameters for the optimizer

        Tunable parameters:
            `epsilon` (float): Value can be selected in the range of `range(1e-6, 1)`
    """
    return {
        'epsilon': (float, {"low": 1e-6, "high": 1, "log": True}),
    }

LRPUniformEpsilon

Bases: LRPBase

LRPUniformEpsilon explainer.

Supported Modules: Linear, Convolution, LSTM, RNN, Attention

Parameters:

Name Type Description Default
model Module

The PyTorch model for which attribution is to be computed.

required
epsilon Union[float, Callable[[Tensor], Tensor]]

The epsilon value.

0.25
stabilizer Union[float, Callable[[Tensor], Tensor]]

The stabilizer value

1e-06
zennit_canonizers Optional[List[Canonizer]]

An optional list of canonizers. Canonizers modify modules temporarily such that certain attribution rules can properly be applied.

None
layer Optional[Union[Union[str, Module], Sequence[Union[str, Module]]]]

The target module to be explained

None
n_classes Optional[int]

Number of classes

None
**kwargs

Keyword arguments that are forwarded to the base implementation of the Explainer

required
Source code in pnpxai/explainers/lrp.py
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
class LRPUniformEpsilon(LRPBase):
    """
    LRPUniformEpsilon explainer.

    Supported Modules: `Linear`, `Convolution`, `LSTM`, `RNN`, `Attention`

    Parameters:
        model (Module): The PyTorch model for which attribution is to be computed.
        epsilon (Union[float, Callable[[Tensor], Tensor]]): The epsilon value.
        stabilizer (Union[float, Callable[[Tensor], Tensor]]): The stabilizer value
        zennit_canonizers (Optional[List[Canonizer]]): An optional list of canonizers. Canonizers modify modules temporarily such that certain attribution rules can properly be applied.
        layer (Optional[Union[Union[str, Module], Sequence[Union[str, Module]]]]): The target module to be explained
        n_classes (Optional[int]): Number of classes
        **kwargs: Keyword arguments that are forwarded to the base implementation of the Explainer
    """

    SUPPORTED_MODULES = [Linear, Convolution, LSTM, RNN, Attention]

    def __init__(
        self,
        model: Module,
        epsilon: Union[float, Callable[[Tensor], Tensor]] = .25,
        stabilizer: Union[float, Callable[[Tensor], Tensor]] = 1e-6,
        zennit_canonizers: Optional[List[Canonizer]] = None,
        forward_arg_extractor: Optional[ForwardArgumentExtractor] = None,
        additional_forward_arg_extractor: Optional[ForwardArgumentExtractor] = None,
        layer: Optional[TargetLayerOrListOfTargetLayers] = None,
        n_classes: Optional[int] = None
    ) -> None:
        self.epsilon = epsilon
        self.stabilizer = stabilizer
        self.zennit_canonizers = zennit_canonizers

        zennit_composite = _get_uniform_epsilon_composite(
            epsilon, stabilizer, zennit_canonizers)
        super().__init__(
            model,
            zennit_composite,
            forward_arg_extractor,
            additional_forward_arg_extractor,
            layer,
            n_classes
        )

    def get_tunables(self) -> Dict[str, Tuple[type, dict]]:
        """
            Provides Tunable parameters for the optimizer

            Tunable parameters:
                `epsilon` (float): Value can be selected in the range of `range(1e-6, 1)`
        """
        return {
            'epsilon': (float, {"low": 1e-6, "high": 1, "log": True}),
        }

get_tunables()

Provides Tunable parameters for the optimizer

Tunable parameters

epsilon (float): Value can be selected in the range of range(1e-6, 1)

Source code in pnpxai/explainers/lrp.py
196
197
198
199
200
201
202
203
204
205
def get_tunables(self) -> Dict[str, Tuple[type, dict]]:
    """
        Provides Tunable parameters for the optimizer

        Tunable parameters:
            `epsilon` (float): Value can be selected in the range of `range(1e-6, 1)`
    """
    return {
        'epsilon': (float, {"low": 1e-6, "high": 1, "log": True}),
    }