LRP
LRPBase
Bases: ZennitExplainer
Base class for LRPUniformEpsilon
, LRPEpsilonGammaBox
, LRPEpsilonPlus
, and LRPEpsilonAlpha2Beta1
explainers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Module
|
The PyTorch model for which attribution is to be computed. |
required |
zennit_composite |
Composite
|
The Composite object applies canonizers and register hooks to modules. One Composite instance may only be applied to a single module at a time. |
required |
layer |
Optional[Union[Union[str, Module], Sequence[Union[str, Module]]]]
|
The target module to be explained |
None
|
n_classes |
Optional[int]
|
Number of classes |
None
|
forward_arg_extractor |
Optional[ForwardArgumentExtractor]
|
A function that extracts forward arguments from the input batch(s) where the attribution scores are assigned. |
None
|
additional_forward_arg_extractor |
Optional[ForwardArgumentExtractor]
|
A secondary function that extract additional forward arguments from the input batch(s). |
None
|
**kwargs |
Keyword arguments that are forwarded to the base implementation of the Explainer |
required |
Reference
Bach S., Binder A., Montavon G., Klauschen F., M¨uller K.-R., and Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation.
Source code in pnpxai/explainers/lrp.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
|
attribute(inputs, targets)
Computes attributions for the given inputs and targets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs |
Tensor
|
The input data. |
required |
targets |
Tensor
|
The target labels for the inputs. |
required |
Returns:
Type | Description |
---|---|
Union[Tensor, Tuple[Tensor]]
|
torch.Tensor: The result of the explanation. |
Source code in pnpxai/explainers/lrp.py
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
|
LRPEpsilonAlpha2Beta1
Bases: LRPBase
LRPEpsilonAlpha2Beta1 explainer.
Supported Modules: Convolution
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Module
|
The PyTorch model for which attribution is to be computed. |
required |
epsilon |
Union[float, Callable[[Tensor], Tensor]]
|
The epsilon value. |
1e-06
|
stabilizer |
Union[float, Callable[[Tensor], Tensor]]
|
The stabilizer value |
1e-06
|
zennit_canonizers |
Optional[List[Canonizer]]
|
An optional list of canonizers. Canonizers modify modules temporarily such that certain attribution rules can properly be applied. |
None
|
layer |
Optional[Union[Union[str, Module], Sequence[Union[str, Module]]]]
|
The target module to be explained |
None
|
n_classes |
Optional[int]
|
Number of classes |
None
|
**kwargs |
Keyword arguments that are forwarded to the base implementation of the Explainer |
required |
Source code in pnpxai/explainers/lrp.py
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
|
get_tunables()
Provides Tunable parameters for the optimizer
Tunable parameters
epsilon
(float): Value can be selected in the range of range(1e-6, 1)
Source code in pnpxai/explainers/lrp.py
376 377 378 379 380 381 382 383 384 385 |
|
LRPEpsilonGammaBox
Bases: LRPBase
LRPEpsilonGammaBox explainer.
Supported Modules: Convolution
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Module
|
The PyTorch model for which attribution is to be computed. |
required |
low |
float
|
The lowest possible value for computing gamma box |
-3.0
|
high |
float
|
The highest possible value for computing gamma box |
3.0
|
gamma |
float
|
The gamma value for computing gamma box |
0.25
|
epsilon |
Union[float, Callable[[Tensor], Tensor]]
|
The epsilon value. |
1e-06
|
stabilizer |
Union[float, Callable[[Tensor], Tensor]]
|
The stabilizer value |
1e-06
|
zennit_canonizers |
Optional[List[Canonizer]]
|
An optional list of canonizers. Canonizers modify modules temporarily such that certain attribution rules can properly be applied. |
None
|
layer |
Optional[Union[Union[str, Module], Sequence[Union[str, Module]]]]
|
The target module to be explained |
None
|
n_classes |
Optional[int]
|
Number of classes |
None
|
**kwargs |
Keyword arguments that are forwarded to the base implementation of the Explainer |
required |
Source code in pnpxai/explainers/lrp.py
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
|
get_tunables()
Provides Tunable parameters for the optimizer
Tunable parameters
epsilon
(float): Value can be selected in the range of range(1e-6, 1)
gamma
(float): Value can be selected in the range of range(1e-6, 1)
Source code in pnpxai/explainers/lrp.py
261 262 263 264 265 266 267 268 269 270 271 272 273 |
|
LRPEpsilonPlus
Bases: LRPBase
LRPEpsilonPlus explainer.
Supported Modules: Convolution
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Module
|
The PyTorch model for which attribution is to be computed. |
required |
epsilon |
Union[float, Callable[[Tensor], Tensor]]
|
The epsilon value. |
1e-06
|
stabilizer |
Union[float, Callable[[Tensor], Tensor]]
|
The stabilizer value |
1e-06
|
zennit_canonizers |
Optional[List[Canonizer]]
|
An optional list of canonizers. Canonizers modify modules temporarily such that certain attribution rules can properly be applied. |
None
|
layer |
Optional[Union[Union[str, Module], Sequence[Union[str, Module]]]]
|
The target module to be explained |
None
|
n_classes |
Optional[int]
|
Number of classes |
None
|
**kwargs |
Keyword arguments that are forwarded to the base implementation of the Explainer |
required |
Source code in pnpxai/explainers/lrp.py
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
|
get_tunables()
Provides Tunable parameters for the optimizer
Tunable parameters
epsilon
(float): Value can be selected in the range of range(1e-6, 1)
Source code in pnpxai/explainers/lrp.py
320 321 322 323 324 325 326 327 328 329 |
|
LRPUniformEpsilon
Bases: LRPBase
LRPUniformEpsilon explainer.
Supported Modules: Linear
, Convolution
, LSTM
, RNN
, Attention
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Module
|
The PyTorch model for which attribution is to be computed. |
required |
epsilon |
Union[float, Callable[[Tensor], Tensor]]
|
The epsilon value. |
0.25
|
stabilizer |
Union[float, Callable[[Tensor], Tensor]]
|
The stabilizer value |
1e-06
|
zennit_canonizers |
Optional[List[Canonizer]]
|
An optional list of canonizers. Canonizers modify modules temporarily such that certain attribution rules can properly be applied. |
None
|
layer |
Optional[Union[Union[str, Module], Sequence[Union[str, Module]]]]
|
The target module to be explained |
None
|
n_classes |
Optional[int]
|
Number of classes |
None
|
**kwargs |
Keyword arguments that are forwarded to the base implementation of the Explainer |
required |
Source code in pnpxai/explainers/lrp.py
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
get_tunables()
Provides Tunable parameters for the optimizer
Tunable parameters
epsilon
(float): Value can be selected in the range of range(1e-6, 1)
Source code in pnpxai/explainers/lrp.py
196 197 198 199 200 201 202 203 204 205 |
|