RAP
pnpxai.explainers.rap.attribute
RAP
Bases: Explainer
Computes Relative Attribute Propagation (RAP) explanations for a given model.
Supported Modules: Linear
, Convolution
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The model for which RAP explanations are computed. |
required |
Reference
Woo-Jeoung Nam, Shir Gur, Jaesik Choi, Lior Wolf, Seong-Whan Lee. Relative Attributing Propagation: Interpreting the Comparative Contributions of Individual Units in Deep Neural Networks.
SUPPORTED_MODULES = [Linear, Convolution]
class-attribute
instance-attribute
method = RelativeAttributePropagation(model)
instance-attribute
EXPLANATION_TYPE: ExplanationType = 'attribution'
class-attribute
instance-attribute
TUNABLES = {}
class-attribute
instance-attribute
model = model.eval()
instance-attribute
forward_arg_extractor = forward_arg_extractor
instance-attribute
additional_forward_arg_extractor = additional_forward_arg_extractor
instance-attribute
device
property
__init__(model: Model)
compute_pred(output: Tensor) -> Tensor
Computes the predicted class probabilities.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output
|
Tensor
|
The model output. |
required |
Returns:
Name | Type | Description |
---|---|---|
Tensor |
Tensor
|
The one-hot encoded predicted class probabilities. |
attribute(inputs: DataSource, targets: DataSource, *args: Any, **kwargs: Any) -> DataSource
Computes RAP attributions for the given inputs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
DataSource
|
The input data. |
required |
targets
|
DataSource
|
The target labels. |
required |
*args
|
Any
|
Additional positional arguments. |
()
|
**kwargs
|
Any
|
Additional keyword arguments. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
DataSource |
DataSource
|
RAP attributions. |
format_outputs_for_visualization(inputs: DataSource, targets: DataSource, explanations: DataSource, task: Task, kwargs: Optional[Dict[str, Any]] = None)
__repr__()
copy()
set_kwargs(**kwargs)
get_tunables() -> Dict[str, Tuple[type, dict]]
Returns a dictionary of tunable parameters for the explainer.
Returns:
Type | Description |
---|---|
Dict[str, Tuple[type, dict]]
|
Dict[str, Tuple[type, dict]]: Dictionary of tunable parameters. |